Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  thiol
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The cytotoxic activity, susceptibility to thiol activation and ability of eight 1-nitroacridine derivatives to stabilize the topoisomerase I-DNA cleavable complex, were compared. Among the acridines tested three compounds exhibited high ability to stabilize the cleavable complex. This ability was correlated with susceptibility to thiol activation as well as with cytotoxic activity. Our results suggest that 1-nitroacridine-DNA adducts interfering with topoisomerase I action may contribute to the lethal effects of some 1-nitroacridine derivatives.
The redox status of plasma thiols can be a diagnostic indicator of different patho­logical states. The aim of this study was to identify the age dependent changes in the plasma levels of total, free and protein bound glutathione, cysteine and homocysteine. The determination was conducted in plasma of three groups of rats: 1) young (3-month-old), 2) middle aged (19-month-old), and 3) old (31-month-old). To­tal levels of glutathione, cysteine and homocysteine and their respective free and protein-bound fractions decreased with age. The only exception was a rise in free homocysteine concentration in the middle group, which indicates a different pattern of transformations of this thiol in plasma. The drop in the level of protein-bound thiols suggests that the antioxidant capacity of plasma diminishes with age, which, consequently, leads to impaired protection of -SH groups through irreversible oxida­tion. The plasma sulfane sulfur level also declines with age, which means that aging is accompanied by inhibition of anaerobic sulfur metabolism.
Penicillium brevicompactum highly tolerated cobalt concentrations of 50, 200, 800 and 1000 ppm both through cell wall and intracellular sequestration - immobilization of the metal on/within the cell wall, cell wall thickness, presence of electron-dense deposits inside vacuoles (thiol peptides sequestering cobalt) and in the cytoplasm (cobalt), and presence of matrixed electron-dense deposits, only at 800 and 1000 ppm, were observed. Increased vacuole formation and plasmolysis were also observed. Fraction number 9 of the cell free extract showed maximum cobalt uptake for all the investigated cobalt concentrations. In this fraction, glutathione was only induced at 500, 800 and 1000 ppm. Maximum glutathione concentration supported maximum cobalt uptake at 800 ppm. Low molecular weight protein profiles of fraction number 9 revealed that the presence of cobalt induced the appearance of new proteins that were not detected in the same fraction of the control. These low molecular weight peptides (12-5 KDa) suggest the production of Co-metallothioneins. This is the first report of cobalt-induced glutathione by P. brevicompactum and suggests the possible production of phytochelatins.
Peroxynitrite (oxoperoxonitrate(-l)), anion of peroxynitrous acid, is thought to mediate the toxic action of nitric oxide and superoxide anion. Peroxynitrite is formed in a fast reaction between these species, reacts with all classes of biomolecules, is cytotoxic, and is thought to be involved in many pathological phenomena. Its main reactions involve one- and two-electron oxidation and nitration. Protein nitration is often used as a footprint of peroxynitrite reactions in vivo. Nitration of tyrosine and of tyrosyl residues in proteins may be an important mechanism of derangement of biochemical signal transduction by this compound. However, apparently beneficial effects of peroxynitrite have also been described, among them formation of nitric oxide and nitric oxide donors in reactions of peroxynitrite with thiols and alcohols.
Cisplatin (cis-diamminedichloroplatinum II, cisPt) is especially useful in the treatment of epithelial malignancies, however, the use of cisplatin is accompanied by several toxicities including haematological toxicity. Contrary to cisplatin, selenium-cisplatin conjugate ((NH3)2Pt(SeO3); Se-Pt) has only a slight toxicity effect on blood platelet function. In the mechanism of platinum compounds action on platelets thiols are involved. The aim of the present studies was to examine in vitro how trans-resveratrol (trans-3,4',5-trihydroxystilbene) acts on the levels of platelet glutathione (GSH) and other thiol-containing compounds and how, as an antioxidant, protecs blood platelets against the oxidative stress caused by platinum compounds (cisPt and Se-Pt). To analyse the level of thiols in human blood platelets treated with platinum compounds and with resveratrol the classical technique HPLC has been used. Blood platelets isolated by differential centrifugation of human blood were incubated (30 min, 37°C) with cisPt or Se-Pt at dose of 10 µg/ml that inhibits platelet function and with resveratrol (25 µg/ml). The obtained results indicate that platinum compounds caused in platelets a decrease of both, reduced glutathione (GSH) and free thiols of cysteine (CSH) and cysteinylglycine (CGSH). The pool of these compounds in unreduced form was increased. Platinum compounds caused the reduction of platelet protein thiols. Resveratrol (after 30 min action) at the concentration of 25 µg/ml partly reduced the platinum compounds induced decrease of platelet thiols, particularly thiols in acid-soluble fraction.
 The redox status of the cell is described by the ratio of reduced to non-reduced compounds. Redox reactions which determine the redox state are an essential feature of all living beings on Earth. However, the first life forms evolved under strongly anoxic conditions of the young Earth, and the redox status probably was based on iron and sulphur compounds. Nowadays, redox reactions in cells have developed in strict connection to molecular oxygen and its derivatives i.e. reactive oxygen species (ROS). Oxygen has started to accumulate on the Earth due to oxygenic photosynthesis. All aspects of aerobic life involve ROS, reactive nitrogen species (RNS), antioxidants and redox regulation. Many different redox-active compounds are involved in the complex of redox processes, including pyridine nucleotides, thioredoxins, glutaredoxins and other thiol/disulphide-containing proteins. Redox regulation is integrated with the redox-reactions in photosynthesis and respiration to achieve an overall energy balance and to maintain a reduced state necessary for the biosynthetic pathways that are reductive in nature. It underlies the physiological and developmental flexibility in plant response to environmental signals.
The study was carried out on two highbush blueberry cultivars: Bluecrop and Darrow in 2001 and 2002 seasons. Analyses for phytochemical contents in berries were made during commercial maturity of fruit. Concentration of anthocyanins and low molecular weight thiol compounds was significantly higher in ´Darrow´ berries in comparison to Bluecrop cv., irrespective of the harvest year. Tested cultivars did not differ in the ratio of the reduced form of glutathione in its total quantity. As opposed to this, the higher proportion of the reduced form of ascorbate in its total concentration was noted for ´Bluecrop´, but it was statistically proven only in the first year of research. A very low activity of antioxidative enzymes was noted, however on the average, considerably higher activity of glutathione reductase showed ´Darrow´, whereas ´Bluecrop´ had higher catalase activity. The ascorbate peroxidase activity was not detected in the extracts of ´Bluecrop´s’ berries. Berries of ´Darrow´, which exhibited, in general, the higher antioxidants content in the first year of the study, were harvested at two different dates in 2002: in the middle of July and at the end of August. The harvest date had a significant effect on the level of some phytochemicals. The fruit harvested in August had lower content of cysteine, glutathione, phenolics, flavonols and anthocyanins than the ones harvested in July. Ascorbate content was similar at both harvest dates. Growing season also had the influence on antioxidant properties, especially on the content of ascorbic acid.
The involvement of some low-molecular thiol compounds in the mechanisms of peroxidative action of cadmium (Cd) and ethanol (EtOH) was studied. Concentrations of reduced glutathione (GSH), metallothionein (Mt) and thiol (-SH) groups in protein and non-protein fractions were assessed in the homogenates of the liver and kidney of rats exposed to Cd (50 Cd/dm³ of drinking water) and EtOH (5 g EtOH/kg body weight/24 h, intragastrically), singly or in combination, for 12 weeks. Exposure to Cd caused a reduction in the concentration of GSH and non-protein SH groups in the liver and kidneys with a simultaneous increase in Mt level in these organs. The concentration of total SH groups increased only in kidneys. Administration of EtOH had no effect on Mt concentration in both organs, but caused a reduction in the concentration of GSH and non-protein SH groups. A reduction in the level of total SH groups following exposure to EtOH was also noted in the liver. In the group of rats with a simultaneous exposure to Cd and EtOH, GSH concentration was decreased in the liver compared to the control and Cd-exposed animals, and in the kidney in comparison to the control and EtOH-receiving rats. Following the combined exposure to Cd and EtOH, the concentration of non-protein SH groups decreased in the liver and kidneys in comparison to the control and Cd-exposed rats, and in the liver also in comparison to the EtOH group. Mt concentration increased in the liver and kidneys of animals exposed to a combination of Cd and EtOH, compared to the control and EtOH group, but was reduced compared to the Cd group. Combined administration of Cd and EtOH caused an increase in the concentration of total SH groups in the kidneys compared to the control, Cd and EtOH groups. A negative correlation was found between GSH concentration and malondialdehyde (MDA) levels and positive correlation between Mt and MDA. The intensity of lipid peroxidation as well as GSH and Mt concentrations influencing this process in the state of combined exposure to Cd and EtOH results both from independent actions of these substances and interactions between them. The study outcome seems to indicate that the Cd- and EtOH-induced reduction in GSH and non-protein SH groups in the liver and kidneys may be one of the mechanisms that leads to lipid peroxidation in these organs.
Conditions of achieving the maximal accumulation of sulfhydryl metabolites in the leaves of tobacco were explored. Simultaneous production of bacterial O-acetylserine (thiol)-lyase and serine acetyltransferase resulted in the increased thiols contents as compared to single transformants and controls. However, leaf discs feeding experi­ments differently affected thiols concentration in different plant groups and sug­gested that the most promising strategy to obtain plants with a high level of non-protein thiol-containing compounds might be sulfate feeding to plants overpro­ducing serine acetyltransferase.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.