Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  therapeutic agent
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The present review deals with the bioactive compounds of the marine non-chordates. The potent medicinal usage of the bioactive compounds viz. steroids, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, brominated compounds, nitrogen heterocyclics and nitrogen-sulphur heterocyclics from marine non-chordates have been compiled. Various literatures survey revealed that the bioactive compounds isolated in recent past from the marine poriferans, cnidarians, annelids, arthropods, molluscs and echinoderms could be rich sources of therapeutic agents having antibacterial, antiinflamatory, anticarcinogenic properties. In overall, the present study will be benefitted to know global drug discovery researches on bioactive compounds from marine organisms for students, scholars, scientists, pharmaceutical sector, and government regulating authorities as new challenging technology in clinical applications through medicines.
In recent years, a massive effort has been directed towards designing potent and selective antagonists of neurohypophyseal hormones substituted at position 3. Modi­fication of vasopressin at position 3 with 4,4'-biphenylalanine results in pharmaco­logically inactive analogues. Chemically, this substitution appears to vary only slightly from those previously made by us (1-Nal or 2-Nal), which afforded potent agonists of V2 receptors. In this situation, it seemed worthwhile to study the struc­ture of the analogues with 4,4-biphenylalanine (BPhe) at position 3 in aqueous solu­tion using NMR spectroscopy and total conformational analysis. This contribution is part of extensive studies aimed at understanding spatial structures of 3-substituted [Arg8 ]vasopressin analogues of different pharmacological properties. NMR data were used to calculate 3D structures for all the analogues using two methods, EDMC with the ECEPP/3 force field, and molecular dynamic with the simulated annealing (SA) algorithm. The structures obtained by the first method show a better fit between the NMR spectral evidence and the calculation for all the peptides.
The aim was to study the activity of lysostaphin in monotherapy or in combination with oxacillin, towards biofilms built by clinical and reference S. aureus and S. epidermidis strains in the wells of microplate, in the chambers of a LabTekII chamber slide or on the polyethylene catheter. MICs of oxacillin and lysostaphin for planktonie bacteria were determined according to the standards of NCCLS. BIC (Biofilm Inhibitory Concentration) was estimated by the MTT assay. The integrity of biofilm treated with antimicrobials was also examined: by staining with FITC and laser scanning fluorescence confocal microscopy and visually by TTC reduction assay. Despite the fact that susceptibility of planktonie cultures of 25 staphylococcal strains to lysostaphin action was various, we have demonstrated the effectiveness of lysostaphin in the treatment of biofilm, built not only on the flat surface of the microplates but also on catheter's surface. The synergistic effect of subBIC lysostaphin+oxacillin was observed forMSSA and MRSA biofilms but not for 1474/01 hVISA strain. Also BICOXA for S. epidermidis RP12 and A4c strains, but not for 6756/99 MRSE biofilms was reduced when lysostaphin was simultaneously used.
It has been known that VEGF121 isoform can serve as a carrier of therapeutic agents targeting tumor endothelial cells. We designed and constructed synthetic cDNA that encodes a chimeric protein comprising abrin-a (ABRaA) toxin A-chain and human VEGF121. Expression of the ABRaA-VEGF121 chimeric protein was carried out in E. coli strain BL21(DE3). ABRaA-VEGF121 preparations were isolated from inclusion bodies, solubilized and purified by affinity and ion-exchanged chromatography (Ni-agarose and Q-Sepharose). Finaly, bacterial endotoxin was removed from the recombinant protein. Under non-reducing conditions, the recombinant protein migrates in polyacrylamide gel as two bands (about 84 kDa homodimer and about 42 kDa monomer). ABRaA-VEGF121 is strongly cytotoxic towards PAE cells expressing VEGFR-2, as opposed to VEGFR-1 expressing or parental PAE cells. The latter are about 400 times less sensitive to the action of this fusion protein. The biological activity of the ABRaA domain forming part of the chimeric protein was assessed in vitro: ABRaA-VEGF121 inhibited protein biosynthesis in a cell-free translation system. Preincubation of ABRaA-VEGF121 with antibody neutralizing the biological activity of human VEGF abolished the cytotoxic effect of the chimeric protein in PAE/KDR cells. Experiments in vivo demonstrated that ABRaA-VEGF121 inhibits growth of B16-F10 murine melanoma tumors.
The problem of significantly reduced drug use concerns particularly the infections caused by multi-resistant pathogens, especially Gram-negative bacteria. In this regard, interest is increasing in the known for nearly 50 years, but now frequently forgotten antibiotic – fosfomycin. Fosfomycin possesses high effectiveness for multidrug-resistant bacteria, comprising of extended-spectrum β-lactamases (ESBL), Klebsiella pneumoniae carbapenemases (KPC); commonly, the pandrug-resistant (PDR) and the extensively drug-resistant (XDR) strains, especially from Enterobacteriaceae family. Because of facilitated distribution into inflamed tissues and a very broad range of in vitro bactericidal activity, fosfomycin may have various applications in the treatment of many kinds of bacterial infections, including acute uncomplicated infections of the urinary bladder or complicated urinary tract infections, urinary tract sepsis, pyelonephritis, cystitis, prostatitis and chronic lung infections in patients with cystic fibrosis, the great majority caused by multi-resistant Gram-negative bacteria, and in the therapy eradicating multidrug-resistant Helicobacter pylori. Fosfomycin may limit the toxicity of other antibiotics and play a protective role in the process of bacterial resistance development during the therapy. Combinations of different antimicrobials enable the use of forgotten antibiotics in commonly occurring infections, although they are still completely incurable.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.