Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  supraoptic nucleus
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of 2-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), corticoliberine (CRH), and neuropeptide Y (NPY) magnocellular phenotypes, were analysed in response to 2-adrenoceptor manipulations and sustained hyperosmolality in vasopressin deficient homozygous Brattleboro (di/di) rats. Saline (0.9% NaCl, 0.1 ml/100g/bw), XYL (10 mg/kg/bw), atipamezole (ATIP, 2-adrenoceptors antagonist, 1 mg/kg/bw), and ATIP 5 min later followed by XYL, were applied intraperitoneally. Presence of immunolabeled Fos peptide signalized the neuronal activity. Ninety minutes after injections, the rats were anesthesized and sacrificed by transcardial perfusion with fixative. Coronal sections of 30 µm thickness double immunolabeled with Fos/neuropeptide were evaluated under light microscope. Under basal conditions, di/di in comparison with control Long Evans rats, displayed significantly higher number of TH, CRH, and NPY immunoreactive neurons in the SON and PVN (except NPY cells in PVN) and more than 90%, 75%, and 86% of TH, NPY, and CRH neurons, respectively, displayed also Fos signal in the SON. XYL did not further increase the number of Fos in the PVN and SON and ATIP failed to reduce the stimulatory effect of hypertonic saline in all neuronal phenotypes studied. Our data indicate that hyperosmotic conditions significantly influence the activity of TH, CRH, and NPY magnocellular neuronal phenotypes, but 2-adrenoceptors do not play substantial role in their regulation during osmotic challenge induced by AVP deficiency.
This study explores the quantitative patterns of immunolabeled Fos protein incidence in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) oxytocinergic (OXY) neurons in response to immobilization (IMO) stress in corticotrophin releasing hormone deficient (CRH-KO) mice. Adult male mice, taken directly from cages or 120 min after a single IMO, were sacrificed by intracardial perfusion with fixative. Coronal brain sections of 30 µm thickness were processed for dual Fos/OXY immunohistochemistry. In control wild type (WT) and CRH-KO mice, scattered Fos immunoreactivity was observed in hypothalamus, including the PVN where scanty Fos signal occurred in both parvocellular and magnocellular PVN subdivisions. Dual Fos/OXY immunostainings revealed higher basal Fos expression in the PVN of control CRH-KO mice. IMO evoked a marked rise in Fos expression in OXY neurons of the PVN and SON in both WT and CRH-KO groups of mice. The present data demonstrate that 1/ CRH deficiency upregulates the basal activity of hypothalamic PVN OXY cells in CRH-KO mice and 2/ IMO stress in both WT and CRH-KO mice affects distinctly the activity of OXY cells in both SON and PVN. Our data indicate that CRH deficiency does not alter the responsiveness of PVN and SON OXY cells to IMO stress.
The immunoreactivity (ir) for c-Fos, NGF and TrkA, following an acute and chronic open field stress, were studied in the periventricular zone of rat hypothalamus. Adult rats were divided into three groups: control, exposed to acute (single exposure -15 minutes) and chronic (multiple exposures - 15 minutes daily for 21 days) open field stress. In the control rats neurons immunoreactive to c-Fos, TrkA and NGF were found. The number of TrkA- and NGF-ir cells was high, whereas this of c-Fos-ir ones was low. In animals exposed to acute open field stress the number of c-Fos-ir cells in the examined nuclei varied, however it was much higher than that in the control animals. The number of TrkA-ir neurons in all the studied nuclei was also higher than that in the control animals, but the increase of the number of NGF-ir neurons was not observed in supraoptic nucleus. In the animals exposed to chronic open field stress the number of c-Fos-ir cells was increased in comparison to that in the control rats. After chronic stress exposure the number of TrkA-ir neurons in supraoptic nucleus remained high in comparison to that in animals exposed to acute stress, whereas it was decreased in other studied nuclei. No significant differences in the number of NGF-ir cells were observed between the groups exposed to the acute and chronic stress. Observed decrease of c-Fos- and TrkA-ir in the studied nuclei in the animals suffering from chronic stress in comparison with the acute one may indicate the occurrence of habituation phenomenon. This phenomenon does not concern NGF-ir.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.