Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  suprachiasmatic nucleus
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.
5
Content available remote

Gut clock: implication of circadian rhythms in the gastrointestinal tract

67%
Circadian and seasonal rhythms are a fundamental feature of all living organisms and their organelles. Biological rhythms are responsible for daily food intake; the period of hunger and satiety is controlled by the central pacemaker, which resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and communicates with tissues via bidirectional neuronal and humoral pathways. The molecular basis for circadian timing in the gastrointestinal tract (GIT) involves interlocking transcriptional/translational feedback loops which culminate in the rhythmic expression and activity of a set of clock genes and related hormones. Interestingly, it has been found that clocks in the GIT are responsible for the periodic activity (PA) of its various segments and transit along the GIT; they are localized in special interstitial cells, with unstable membrane potentials located between the longitudinal and circular muscle layers. The rhythm of slow waves is controlled in various segments of the GIT: in the stomach (about 3 cycles per min), in the duodenum (12 cycle per min), in the jejunum and ileum (from 7 to 10 cycles per min), and in the colon (12 cycles per min). The migrating motor complex (MMC) starts in the stomach and moves along the gut causing peristaltic contractions when the electrical activity spikes are superimposed on the slow waves. GIT hormones, such as motilin and ghrelin, are involved in the generation of MMCs, while others (gastrin, ghrelin, cholecystokinin, serotonin) are involved in the generation of spikes upon the slow waves, resulting in peristaltic or segmental contractions in the small (duodenum, jejunum ileum) and large bowel (colon). Additionally, melatonin, produced by neuro-endocrine cells of the GIT mucosa, plays an important role in the internal biological clock, related to food intake (hunger and satiety) and the myoelectric rhythm (produced primarily by the pineal gland during the dark period of the light-dark cycle). This appears to be an endocrine encoding of the environmental light-dark cycle, conveying photic information which is used by organisms for both circadian and seasonal organization. Motor and secretory activity, as well as the rhythm of cell proliferation in the GIT and liver, are subject to many circadian rhythms, mediated by autonomic cells and some enterohormones (gastrin, ghrelin and somatostatin). Disruption of circadian physiology, due to sleep disturbance or shift work, may result in various gastrointestinal diseases, such as irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD) or peptic ulcer disease. In addition, circadian disruption accelerates aging, and promotes tumorigenesis in the liver and GIT. Identification of the molecular basis and role of melatonin in the regulation of circadian rhythm allows researchers and clinicians to approach gastrointestinal diseases from a chronobiological perspective. Clinical studies have demonstrated that the administration of melatonin improves symptoms in patients with IBS and GERD. Moreover, our own studies indicate that melatonin significantly protects gastrointestinal mucosa, and has strong protective effects on the liver in patients with non-alcoholic steatohepatitis (NASH). Recently, it has been postulated that disruption of circadian regulation may lead to obesity by shifting food intake schedules. Future research should focus on the role of clock genes in the pathophysiology of the GIT and liver.
The immunoreactivity (ir) for c-Fos, NGF and TrkA, following an acute and chronic open field stress, were studied in the periventricular zone of rat hypothalamus. Adult rats were divided into three groups: control, exposed to acute (single exposure -15 minutes) and chronic (multiple exposures - 15 minutes daily for 21 days) open field stress. In the control rats neurons immunoreactive to c-Fos, TrkA and NGF were found. The number of TrkA- and NGF-ir cells was high, whereas this of c-Fos-ir ones was low. In animals exposed to acute open field stress the number of c-Fos-ir cells in the examined nuclei varied, however it was much higher than that in the control animals. The number of TrkA-ir neurons in all the studied nuclei was also higher than that in the control animals, but the increase of the number of NGF-ir neurons was not observed in supraoptic nucleus. In the animals exposed to chronic open field stress the number of c-Fos-ir cells was increased in comparison to that in the control rats. After chronic stress exposure the number of TrkA-ir neurons in supraoptic nucleus remained high in comparison to that in animals exposed to acute stress, whereas it was decreased in other studied nuclei. No significant differences in the number of NGF-ir cells were observed between the groups exposed to the acute and chronic stress. Observed decrease of c-Fos- and TrkA-ir in the studied nuclei in the animals suffering from chronic stress in comparison with the acute one may indicate the occurrence of habituation phenomenon. This phenomenon does not concern NGF-ir.
Melatonin secretion is not regulated via simple negative feedback inhibition. However some results show that melatonin may influence its own synthesis and secretion as well as other processes in the pineal gland. The present study was undertaken to check the effects of melatonin administered at different times of day on the ultrastructure of pig pinealocytes. The study was performed in summer under natural photoperiod. Gilts, aged 4 months, received lmg or 3 x lmg melatonin (i.m.) daily for four consecutive days, at different times of day. Point count analysis was used in quantitative studies of pinealocyte substructures. The administration of melatonin caused clear changes in the pinealocyte ultrastructure and the effects were closely dependent on the time of hormone injection. The most visible changes were observed in pinealocytes of pigs which received one injection of melatonin per 24 hr, at the end of the light phase. This schedule of melatonin administration resulted in a decrease in the relative volume of mitochondria and dense bodies of type MBB-1 (specific structures of the pig pinealocytes) as well as an increase in the relative volume of Golgi apparatus and numerical density of multivesicular bodies. The melatonin administration three times per 24 hr (in the morning, in the early afternoon and in the evening) caused a decrease in the relative volume of mitochondria and Golgi apparatus as well as an increase in the relative volume of MBB-1. Treatment with melatonin once per 24 hr in the morning resulted in a decrease in the relative volume of mitochondria.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.