Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  spin trapping
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Unsaturated lipids are rapidly oxidized to toxic products such as lipid hydroperoxides, especially when transition metals such as iron or copper are present. In a Fenton-type reaction Fe2+ converts lipid hydroperoxides to the very short-lived lipid alkoxyl radicals. The reaction was started upon the addition of Fe2+ to an aqueous linoleic acid hydroperoxide (LOOH) emulsion and the spin trap in the absence of oxygen. Even when high concentrations of spin traps were added to the incubation mixture, only secondary radical adducts were detected, probably due to the rapid rearrangement of the primary alkoxyl radicals. With the commercially available nitroso spin trap MNP we observed a slightly immobilized ESR spectrum with only one hydrogen splitting, indicating the trapping of a methinyl fragment of a lipid radical. With DMPO or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) adducts were detected with carbon-centered lipid radical, with acyl radical, and with the hydroxyl radical. We also synthesized lipophilic derivatives of the spin trap DEPMPO in order to detect lipid radical species generated in the lipid phase. With all spin traps studied a lipid-derived carbon-centered radical was obtained in the anaerobic incubation system Fe2+/LOOH indicating the trapping of a lipid radical, possibly generated as a secondary reaction product of the primary lipid alkoxyl radical formed. Under aerobic conditions an SOD-insensitive oxygen-centered radical adduct was formed with DEPMPO and its lipophilic derivatives. The observed ESR parameters were similar to those of alkoxyl radical adducts, which were independently synthesized in model experiments using Fe3+-catalyzed nucleophilic addition of methanol or t-butanol to the respective spin trap.
Alloxan can generate diabetes in experimental animals and its action can be associ­ated with the production of free radicals. It is therefore important to check how differ­ent substances often referred to as free radical scavengers may interact with alloxan, especially that some of these substance may show both pro- and antioxidant activities. Using the alkaline comet assay we showed that alloxan at concentrations 0.01-50 uM induced DNA damage in normal human lymphocytes in a dose-dependent manner. Treated cells were able to recover within a 120-min incubation. Vitamins C and E at 10 and 50 uM diminished the extent of DNA damage induced by 50 uM alloxan. Pre-treatment of the lymphocytes with a nitrone spin trap, a-(4-pyridil-1-oxide)- .-t-butylnitrone (POBN) or ebselen (2-phenyl-1,2-benzisoselenazol-3(2.H)-one), which mimics glutathione peroxides, reduced the alloxan-evoked DNA damage. The cells ex­posed to alloxan and treated with formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), enzymes recognizing oxidized and alkyl- ated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results confirmed that free radicals are involved in the formation of DNA lesions induced by alloxan. The results also suggest that alloxan can generate oxidized DNA bases with a preference for purines and contribute to their alkylation.
The properties of red blood cell membranes in patients with chronic renal failure were investigated using electron paramagnetic resonance spectroscopy. Using spin traps, 5,5-dimethylpirroline-l-oxide and N-tert-butyl-a-phenylni- trone, we found generation of hydroxyl radicals in the blood of patients with chronic renal failure after 20 min of regular hemodialysis. The physical state of membrane proteins and membrane osmotic fragility and reductive properties of red blood cells were studied. The increase in the relative correlation time of 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-l-oxyl in­dicates the immobilization of membrane protein molecules in erythrocytes of chronic renal failure patients. The decrease in membrane protein mobility was observed in whole blood incubated with tert-butylhydroperoxide, regardless of the presence of iron. We found that the addition of ferrous ions did not aggravate profound changes in membrane proteins induced with tert-butylhy­droperoxide. We also demonstrated higher osmotic fragility of erythrocytes in the patients with renal failure as compared to normal subjects.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.