Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  sonication
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
100%
Investigations were carried out into the effect of sonication of bee honeys on the course of their crystallization during storage. Use was made of ultrasounds with a frequency of 40 kHz and intensity of ca. 2 W/cm2. Analyses were carried out for physicochemical characteristics of honeys, including: viscosity, texture, conductance and crystallization degree. After 30-min sonication, an increase in viscosity by ca. 30 mPa.s and a reduction in conductance by 0.6 mS/cm were observed in the solution examined. Analyses of the texture (hardness) of honey subjected to the sonication process demonstrated an initial increase of hardness and then its stabilization and even a slight decrease, as compared to the control samples. The degree of crystallization was proportional to the exposure time to ultrasound treatment. The biggest crystals were observed in the non-sonicated samples. Sonication modified the crystallization process of the examined sugar solutions to a significant extent. Observations of the solutions after the sonication demonstrated the formation of a high number of crystals in the whole volume of the sample, whereas the non-sonicated solutions were observed to crystallize unevenly forming large crystals. It was shown that the ultrasound treatment modified the course of recrystallization and, as a result, texture of the recrystallized honeys by decreasing their hardness.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Physical methods of microalgal biomass pretreatment

86%
The prospect of depletion of natural energy resources on the Earth forces researchers to seek and explore new and alternative energy sources. Biomass is a composite resource that can be used in many ways leading to diversity of products. Therefore, microalgal biomass offers great potential. The main aim of this study is to find the best physical method of microalgal bio- mass pretreatment that guarantees efficient lipid extraction. These studies identifies biochemical composition of microalgal biomass as source for biodisel production. The influence of drying at dif- ferent temperatures and lyophilization was investigated. In addi- tion, wet and untreated biomass was examined. Cell disruption (sonication and microwave) techniques were used to improve lipid extraction from wet biomass. Additionally, two different extrac- tion methods were carried out to select the best method of crude oil extraction. The results of this study show that wet biomass after sonication is the most suitable for extraction. The fatty acid com- position of microalgal biomass includes linoleic acid (C18:2), palmitic acid (C16:0), oleic acid (C18:1), linolenic acid (C18:3), and stearic acid (C18:0), which play a key role in biodiesel production.
It has become increasingly apparent that vesicular drag delivery elicits modest possessions in drag targeting. Transfersomes are a form of elastic or deformable vesicle, which were first introduced in the early 1990s. Elasticity can be achieved by using an edge activator in the lipid bilayer stracture. Molecules greater than 500 Da normally do not cross the skin. This prevents epicutaneous delivery of the high molecular weight therapeutics as well as non-invasive trans-cutaneous immunisation. Transdermal route will always remain a lucrative area for drag delivery. With the advent of new categories of drugs like peptides this route has captured more focus to combat the problems related to their delivery through oral route. But the transdermal route is equally filled with the hopes and disappointments as the transport of drag through this route faces many problems especially for the large molecules. To answer this problem many approaches were adopted. One of the very recent approaches is the use of ultra-defonnable carrier systems (transfersomes). They have been used as drag carriers for a range of smali molecules, peptides, proteins and vaccines, both in vitro and in vivo. Transfersomes penetrate through the pores of stratum comeum which are smaller than its size and get into the underlying viable skin in intact form. This is because of its deformable nature. The aim of this article is explanation the formation of micelle and vesicles, various types of vesicles, specifically focusing on transfersomes.
Gangliosides are characteristically enriched in various membrane domains that can be isolated as low density membrane fraction insoluble in detergents (detergent-resistant membranes, DRMs) or obtained after homogenization and sonication in 0.5 M sodium carbonate (low-density membranes, LDMs). We assessed the effect of the ceramide structure of four [3H]-labeled GM1 ganglioside molecular species (GM1s) taken up by HL-60 cells on their occurrence in LDMs, and compared it with our previous observations for DRMs. All GM1s contained C18 sphingosine, which was acetylated in GM1(18:1/2) or acylated with C14, C18 or C18:1 fatty acids (Fas)
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.