Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  selenium supplementation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
2
100%
The level of mineral utilization depends on many factors related to animals as well as to the chemical form of given nutrients. It has been experimentally demonstrated that animals utilize inorganic forms of minerals less efficiently than organic ones. Hence, an attempt has been made to evaluate the bioavailability of selenium bound in different compounds to lambs. Selenium supplementation in fodder mixtures was another aspect included in our tests. Thus, an experiment was conducted on 48 growing lambs, testing the level and chemical forms of selenium in fodder mixtures for animals. In group I (the control) lambs received fodder mixture without any selenium supplement. In the experimental groups, selenium was supplemented as sodium selenite in the amount 0.2 mg Se kg-1 d.m. feeds (II), or selenium enriched yeast (Se-yeast) in the amounts of 0.1 and 0.2 mg Se kg-1 d.m. of feed groups III and IV, respectively. At the end of the experiment, when animals had reached 35 kilos of weight, blood samples were taken. The activity of glutathione peroxidase was estimated in heparinized blood samples. Eight lambs were chosen from each group and killed to collect samples of soft tissues (liver, kidney, brain, muscle). The content of selenium was determined in the tissue samples. Supplementation of feeds for lambs with selenium, both inorganic (sodium selenite) and organic (Se-yeast), increased the content of the element in soft tissues of animals. The highest level of the element was found in the liver and kidneys: 4.65 and 4.90 and 2.10 and 2.30 mg kg-1 fresh tissue, of the lambs receiving sodium selenine and Se-yeast in the amount 0.2 mg Se kg-1 D.M. of feed (groups II and IV), respectively. Selenium compounds added to feeds given to lambs significantly (P£0.01) increased activity of GSH-Px in blood, especially in the case of animals which received yeast enriched with selenium. In blood of the lambs which received feeds with Se-yeast in the amount 0.2 mg Se kg-1 d.m. of feed (group IV), the activity of glutathione peroxidase was by 129.71 U gHb-1 higher, and of the animals which received Se-yeast in the amount 0.1 mg kg-1 d.m. or sodium selenite, the activity of the enzyme was higher by 86.33 and 86.35 U gHb-1, respectively, than the activity of this enzyme in blood of animals from the control group. Supplementation of lambs’ rations with Se in the form of selenite or yeast enriched with selenium forms increased the content of Se in soft tissues and gluthatione peroxidase activity in comparison with animals which did not receive additional doses of this nutrient in fodder mixtures. The availability of Se was more profoundly affected by the amount of the element added rather than its form.
Background: Numerous authors have shown that selenium (Se) concentration and glutathione peroxidase (GSH-Px) activity in plasma of chronic kidney disease (CKD) patients are lower than in healthy subjects, but there are only few publications on the level of GSH-Px protein in those patients and no reports on the effect of Se supplementation to HD patients on the level of this enzyme. Subjects and Methods: Se concentration and GSH-Px protein level in plasma were measured in a group of 30 CKD patients on hemodialysis (HD) supplemented with 200 μg Se/day for 3 months, and 28 patients on HD administered with placebo. Se concentration was measured by graphite furnace atomic absorption spectrometry and plasma GSH-Px protein level by the sandwich ELISA method using polyclonal antibody specific for human plasma GSH-Px. Results: Se concentration in patients on placebo did not change throughout the 3-month study period, but increased significantly in Se supplemented group. Se supplementation to CKD patients on HD had no effect on the level of GSH-Px protein. Conclusions: The lack of GSH-Px protein in CKD patients on HD is not linked to Se deficiency since the level of this element increased after Se supplementation while enzyme protein level did not change. The damaged kidney of HD patients is unable to synthesize GSH-Px, even after induction with selenium.
Magnesium and selenium belong to important bioelements. Magnesium is the second most abundant intracellular macroelement, which takes part in the metabolism of carbohydrates, nucleic acids, protein and lipids. Selenium is an essential microelement, whose deficit has been stated in many different pathological states. Much research on safe and effective selenium supplementation has been performed for the last fifty years but the results still remain unsatisfactory. The aim of our study was to investigate the influence of inorganic sodium selenite Na2SeO3 and two selenoorganic compounds synthetized at our chair on magnesium concentration in tissues of adolescent male Wistar rats. Inorganic selenite was administered as a water solution, whereas organic compounds: 4-(o-tolilo)-selenosemikarbazyd of 2-chlorobenzoic acid of a chain structure (ORG-C) and 3-(o-chlorobenzoylamino)-2-(o-tolylimino)-4- -methyl-4-selenazoline of a ring structure (ORG-R) were suspended in emulsion (oil, arabic gum and water). Selenium compounds were given to rats at a dose of 5⋅10–4 mg Se g–1 b.w. once a day for a period of 10 days. The control group was treated with saline. The administration was performed with use of a stomach tube. In comparison to the control group, selenium supplementation caused decrease in magnesium concentration in kidney and lung tissues, but did not cause any changes in the brain and heart muscle. In the liver and spleen it was only ring selenazoline that affected magnesium concentration, increasing it in the liver and decreasing in the spleen. In the femoral muscle it was only the selenosemicarbazide chain that exerted the significant effect causing a decrease in Mg concentration vs the control group. Selenium supplementation influences the tissue magnesium concentrations depending on tissue and structure of the supplement. Irrespective of the administered compound, it lowered magnesium in kidneys and lungs but caused no changes in the brain and heart muscle. In the liver, spleen and femoral muscle, alterations in the magnesium concentration were dependent on the provided supplement.
The work aimed at determining to what degree cattle herds were threatened with selenium deficiency on the basis of the concentration of this element in soil, feeds, and the blood serum of dry and lactating cows (in the 2nd, 4th, and 6th week of drying, and in the 2nd, 4th, and 6th week of lactation, respectively). The analysis of cow's body supply with selenium showed that selected dairy cattle farms in the Central-Eastern Poland were threatened with the deficiency of this element. Moderate hyposelenosis was found in the herds, whose state was requiring feed supplementation with selenium. Selenium concentration in cows' serum depended on the animal physiological condition, as well as the selenium concentration in soil and feeds, that the animals had received. An increase in the selenium level, amounting to 214.4, 226.0, and 260.8 nmol∙dm⁻³ in blood sampled in the 2nd, 4th, and 6th week of cows' drying off respectively, was recorded. An opposite relation was observed in lactating cows, in which during successive lactation weeks, decreasing selenium concentration in the blood serum (amounting to 250.9, 241.5, and 220.3 nmol∙dm⁻³, respectively) was oberved.
The results of studies conducted so far in the field of supplementing Se deficiency in cow and goat diets demonstrate unequivocally the positive influence of supplements used on the improvement of the health status of animals and an important increase in the concentration of this microelement in the obtained milk. The positive influence on health is reflected in the increased antioxidative status and immunological potential of these animals, in the reduced risk of mastitis, in the improvement of reproductive rate and increased Se transfer to cow foetus. The best results are obtained when the diet is supplemented with selenium yeast. The improvement in animal Se supply also has a positive influence on the increase of antioxidative properties of milk and meat. Further research in the field is necessary, connected among others with determining the relationship between the concentration of Se and antagonistic elements as well as vitamin E.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.