Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  seasonal thermocline
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In the Baltic Proper, the mean circulation is too weak to explain the fast southward spreading of the so-called juvenile freshwater trapped by the seasonal thermocline in the summer season. Improved knowledge of the spatial and temporal scales of the velocity field is needed to better model dispersion. Spatial and temporal scales are investigated using some large historic data sets. Inertial oscillations are almost always present in the Baltic Proper, irrespective of wind conditions and mixed layer thicknesses. Analyses of the coherence in one data set reveal that the inertial oscillations have a horizontal coherence scale of 10–20 km under the conditions experienced during those measurements. Transient eddies and basin-scale modes with weaker periodicity are also indicated in our data sets. A tentative wavenumber spectrum is constructed for the Baltic Proper.
The cold intermediate water (CIW, T<8◦C) entering the Strait of Istanbul and its variation along the strait have been studied by using monthly conductivitytemperature- depth (CTD) data sets collected during the period from 1996 to 2000. In the northern exit of the strait, CIW is located between the seasonal thermocline and Mediterranean water originating from the lower layer of the Sea of Marmara. The thickness of CIW decreases from April to October. In the Strait of Istanbul, CIW is observed as a layer of temperature <14◦C. The thickness of this modified cold intermediate water flowing southwards with the upper layer decreases, while its temperature increases along the strait due to mixing with adjacent water. In the southern exit of the strait, the modified cold intermediate water is observed during the period from May to October. If CIW exists in the Black Sea exit region of the strait, modified cold water is found in the Marmara exit region during the same period. The distribution of CIW in the Strait of Istanbul contributes to our understanding of the dynamics of the strait, especially in the summer months.
The pathways of energy supply for mixing the deep waters of the Baltic Sea is largely unknown. In this paper, a parameterization of the internal wave drag forces on barotropic motion is developed and implemented into a two-dimensional shallow water model of the Baltic Sea. The model is validated against observed sea levels. The dissipation of barotropic motion by internal wave drag that is quantified from the model results show that breaking internal waves generated by wind forced barotropic motions can contribute significantly to diapycnal mixing in the deep water of the Baltic Sea.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.