Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  river-lake system
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
River-lake systems comprise chains of lakes connected by rivers and streams that flow into and out of them. The contact zone between a lake and a river can act as a barrier, where inflowing matter is accumulated and transformed. Magnesium and calcium are natural components of surface water, and their concentrations can be shaped by various factors, mostly the geological structure of a catchment area, soil class and type, plant cover, weather conditions (precipitation- evaporation, seasonal variations), land relief, type and intensity of water supply (surface runoffs and groundwater inflows), etc. The aim of this study was to analyze the influence of a river-lake system on magnesium and calcium concentrations in surface water (inflows, lake, outflow) and their accumulation in bottom deposits. The study was performed between March 2011 and May 2014 in a river-lake system comprising Lake Symsar with inflows, lying in the Olsztyn Lakeland region. The study revealed that calcium and magnesium were retained in the water column and the bottom deposits of the lake at 12.75 t Mg year-1 and 1.97 t Ca year-1. On average, 12.7±1.2 g of calcium and 1.77±0.9 g of magnesium accumulated in 1 kg of bottom deposits in Lake Symsar. The river-lake system, which received pollutants from an agricultural catchment, influenced the Ca2+ and Mg2+ concentrations in the water and the bottom deposits of Lake Symsar. The Tolknicka Struga drainage canal, to which incompletely treated municipal wastewater was discharged, also affected Ca2+ and Mg2+ levels, thus indicating the significant influence of anthropogenic factors.
This study evaluated the influence of the Symsarna River on the spatial distribution of organic matter, Kjeldahl nitrogen (NK) and total phosphorus in the surface layer of bottom sediments. The analyzed site was Symsar Lake in the Olsztyn Lakeland (north-eastern Poland) and the inflows. The results of this study indicate that the lake’s morphology and inflowing streams were largely responsible for the variations in the nutrient content of bottom deposits in the flow-through Symsar Lake. The NK content was significantly correlated with the lake’s depth, whereas TOC levels were determined mainly by the location in the lake. The surface layers of bottom sediments in Lake Symsar were characterized by an average organic matter content of 171.2 g kg-1 and near-neutral pH (6.78-7.77). The average contents of components in the analyzed sediments were determined at 62.01 gTOC kg-1 d.m., 6.08 gNK kg-1d.m. and 2.18 gTP kg-1d.m. Converted to fresh mass, the above contents expressed per square meter of the lake’s sediment reached 3.95 kgTOC m-2 f.m., 0.42 kgNK m-2 f.m. and 0.18 kgTP m-2 f.m. In turn, the average concentrations of components in sediments from the streams, likewise per square meter, equalled 12.4 gTOC m-2 d.m., 0.93 gNK m-2 d.m. and 0.9 gTP m-2 d.m. The highest contents of the analyzed components were observed in bottom sediments near the outflow of a river from the lake and in the lake’s region intersected by the river. The Symsarna River was responsible for the transport of and variability in the deposition of mineral fractions, and for the nutrient accumulation in the surface layer of bottom sediments. A flow-through water body in a river-lake system can contribute to retention in periods when it exerts a negative impact on the trophic status of a lake. From a broader, ecological viewpoint, it can inhibit the transport of pollutants outside the catchment.
A river-lake system (i.e. a river flowing through the lakes) can be perceived as a system of lentic (lake) and lotic (river sections) landscape "patches" and the transitory zones between them. In this system transport and exchange of matter and biological information take place. Taking the Krutynia river (Masurian Lakeland, Poland) and its lakes as an example, transport of different biologically active compounds (like phosphorus) and non-active substances (like chlorides) was characterized. Phosphorus retention was estimated in successive "patches" of the system. The biotic structure and function of the river-lake-river transitory zones were described. They are the places where the particles selection and sedimentation of matter transported in the system take place as well as they are the sites where the selection and exchange of planktonic organisms of different size and reproduction strategy occur.
Lake eutrophication and its consequences is still an important water quality problem being an effect of nutrient input to surface waters. In most lakes of the temperate zone, phosphorus is the nutrient responsible for eutrophication. Bottom sediments are the main pool involved in the retention and cycling of this element. Bottom sediments, depending on their chemical composition and aeration of the overlying water, may take up or release dissolved phosphorus i.e. the form easy utilizable by the plants. This study was aimed at comparing the exchange (uptake/release) of dissolved reactive phosphorus (DRP) in experiments that simulated natural conditions in various types of bottom sediments originating from different river-lake habitats typical of Masurian Lakeland (north-east Poland). Several river-lake systems typical for postglacial landscape were selected like river Jorka (15 km long, 5 lakes in cascade) and river Krutynia (~100 km long flowing through 17 lakes). Sediments used in experiments were taken from the littoral and profundal zones of four lakes (meso- meso-eu-, eutrophic and hypertrophic), from a humic lake and from ecotone zones at the land-water border and at the border between lake and river (from through-flow lakes). In total, 154 experiments were performed to assess the intensity of P exchange at a high (> 8 mg O2 L-1) and low (<2 mg O2 L-1) concentration of oxygen in water overlying undisturbed sediment cores. The following P fractions were isolated using the sequential extraction method and their importance was further analysed: easily exchangeable P (NH4Cl-RP – loosely bound, most available P; BD-RP – redox-dependent P associated with metal (Fe, Mn) hydroxides; NaOH-RP – phosphorus adsorbed mainly on metal (Fe, Al) oxides), hardly exchangeable P (BD-NRP – mainly organic P, whose stability depends on redox potential; NaOH-NRP – phosphorus in microorganisms, polyphosphates and part of organic P bound to detritus and humic substances) and non-exchangeable P (Hcl-P – phosphorus bound to carbonates, apatite-P and phosphorus released during total dissolution of metal oxides; P-residual – non-exchangeable P together with part of organic P). The effect of various factors (i.e. Fe, Mn, Mg, Al, Ca, organic matter, total P content and its fractions) on the intensity of DRP uptake/release was analysed with Pearson correlation and multiple regression. In sediments (both littoral and profundal) from lakes of the Jorka River trophic gradient, high oxygen conditions were always accompanied by P uptake (from –0.9 to –2.8 mg P m-2 d-1) while reduced oxygen concentrations were followed by DRP release (from 2.3 to 18.6 mg P m-2 d-1). These values were several dozen times higher than those noted for sediments from humic lake. Profundal sediments released more P than the littoral ones. In profundal sediments of all lakes of the Jorka River, the intensity of DRP release tooverlying water under reduced O2 concentrations was higher than the uptake rate under aerobic conditions. It means that DRP release prevailed over its uptake. Release rate of DRP tended to be higher from sediments of eutrophic and hypertrophic lakes than from those of meso- and mesoeutrophic lakes both in the two studied habitats (littoral, profundal) and seasons (spring and summer). Sediments of humic lake (from both littoral and profundal zones) showed a low dynamics of DRP uptake/release with a small prevalence of the latter (0.02 to 0.08 mg P m-2 d-1). River-lake-river sediments (from the inflows and outflows of the Krutynia River to a lake) were different in comparison with typical lake sediments – they released DRP to aerated overlying water in both meso- and meso-eutrophic lake. Phosphorus was released from in-shore bog sediments at reduced oxygen concentration in overlying water in both seasons (spring and summer) while under aerobic conditions DRP was weakly taken up and/or released. Fe, Mn, Mg, total P content and redox-dependent easily exchangeable BD-RP fraction had a significant effect on the intensity of P uptake at high concentration of oxygen and P release under reduced oxygen concentration (Pearson correlation, P <0.01). Factor analysis showed that at a high O2 concentration the intensity of DRP uptake by sediments was determined by redoxdependent fraction of P bound to Fe and Mn hydroxides (BD-RP) and the P fraction bound to carbonates and apatite (HCl-P) (r2 = 0.48). At reduced O2 concentration in overlying water the intensity of DRP release was affected by redox-dependent fraction of P associated with Fe and Mn hydroxides (BD-RP), P fraction bound to metal oxides (NaOH-RP), organic P in detritus, P in microorganisms and combined in humic substances (NaOH-NRP) and P fraction bound to carbonates and apatites (HCl-P) (r2 = 0.63). Sediments from eutrophic and hypertrophic lakes in the lower course of the Jorka River are most intensively eutrophicated. They showed the highest values of DRP release and the predominance of P release over P uptake was the highest (up to seven fold). Sediments of these lakes contained the highest amounts of redox-dependent elements – Fe and Mn. Hence, these lakes easily accumulate phosphorus at high concentrations of oxygen but equally easily release it when oxygen in water is depleted. More stable are meso- and meso-eutrophic lakes situated higher in the Jorka River system. Sediments of these lakes released smaller amounts of DRP than eutrophic and hypertrophic lakes and the prevalence of DRP release over uptake was threefold. In-shore bog sediments form a stable system when overlying waters are rich in oxygen. Under reduced oxygen concentrations, however, these habitats become an important P source (comparable with profun dal sediments) for lake littoral zone in case of theirclose contact with lake waters. A system able to bind phosphorus stronger and faster will hamper the delivery of available P to lake water and thus will delay lake eutrophication; that able to release P will accelerate eutrophication. In this case, internal loading may have a decisive effect on the lake trophic status. Profundal mid-lake sites, in-shore bogs and to a smaller extent littoral sediments (gyttja type) are the systems accelerating eutrophication. Humic lake sediments (dy type) are more equilibrated among the studied systems – the differences between uptake and release are small there.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.