Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 23

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  rhizobacteria
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same.
A considerable number of bacterial species are able to exert a beneficial effect upon plant growth. Mostly they are associated with the plant rhizosphere, so they are called as rhizobacteria. Phosphorus is an essential element for plant development and growth making up about 0.2 % of plant dry weight. Several scientists have reported the ability of different bacterial species to solubilize insoluble inorganic phosphate compounds, such as tricalcium phosphate, dicalcium phosphate, hydroxyapatite, and rock phosphate. Detection and estimation of the phosphate solublization ability of microorganisms have been possible using plate screening methods. Phosphate solubilizers produce clearing zones around the microbial colonies in growth media. In the present investigation a total number of fifteen phosphate solubilizing bacterial colonies isolated from different paddy soils in Cuddalore district of Tamilnadu, India. The isolated PSB were identified and characterized for effective use in the field. All the PSB isolates were identified as Bacillus species and designated as P with serial number from 1 to 15. Among the fifteen isolates, the PSB isolate P6 showed highest amount of phosphate solubilization. The quantity of available phosphorus estimated in the P6 grown Sperber broth culture medium on 7th day was maximum of 321.7 μg/ml which was the highest value compared to other PSB isolates.
In this study, the effect of six commercial biocontrol strains, Bacillus pumilus INR7, B. megaterium P2, B. subtilis GB03, B. subtilis S, B. subtilis AS and B. subtilis BS and four indigenous strains Achromobacter sp. B124, Pseudomonas geniculate B19, Serratia marcescens B29 and B. simplex B21 and two plant defense inducers, methyl salicylate (Me-SA) and methyl jasmonate (Me-JA) were assessed on suppression of wheat take-all disease. Treatments were applied either as soil drench or sprayed on shoots. In the soil drench method, the highest disease suppression was achieved in treatment with strains INR7, GB03, B19 and AS along with two chemical inducers. Bacillus subtilis S, as the worst treatment, suppressed take-all severity up to 56%. Both chemical inducers and bacterial strains AS and P2 exhibited the highest effect on suppression of take-all disease in the shoot spray method. Bacillus subtilis S suppressed the disease severity up to 49% and was again the worst strain. The efficacy of strains GB03 and B19 decreased significantly in the shoot spray method compared to the soil drench application method. Our results showed that most treatments had the same effect on take-all disease when they were applied as soil drench or sprayed on aerial parts. This means that induction of plant defense was the main mechanism in suppressing take-all disease by the given rhizobacteria. It also revealed that plant growth was reduced when it was treated with chemical inducers. In contrast, rhizobacteria not only suppressed the disease, but also increased plant growth.
This study was conducted to determine the effect of different plant growth promoting rhizobacteria (PGPR) strains on growth and quality of cauliflower transplants under greenhouse conditions. The strains of Bacillus megaterium TV-3D, B. megaterium TV-91C, Pantoea agglomerans RK-92, B. subtilis TV-17C, B. megaterium TV-87A, B. megaterium KBA-10 were used in this study. The results of this study showed that different bacterial inoculations increased plant growth parameters such as fresh shoot weight, dry shoot weight, root diameter, root length, fresh root weight, dry root weight, plant height, stem diameter, leaf area and chlorophyll contents of cauliflower transplant respectively. Except for abscisic acid (ABA), the values of gibberellic acid (GA), salicylic acid (SA), indole acetic acid (IAA) was increased by ratio of 23.64, 89.54 and 25.63%, respectively in compared to the control by application of B. megaterium KBA-10 and P. agglomerans RK-92. The amount of organic acids with B. subtilis TV-17C PGPR applications have increased at a ranging ratio from 9.63 to 186.02%. Also, PGPR inoculations increased the macro and micro nutrient content of cauliflower transplants. As a result, the use of bacteria treatments may provide a means of improving transplant growth and quality in cauliflower.
Pseudomonas fluorescens strains III107 and II21 and Bacillus mycoides strains JC192 and K184, stimulating growth of winter wheat, were chosen for the studies. The bacterial strains inhibited on agar nutrient medium the growth of Gaeumannomyces graminis var. tritici (Ggt) - the pathogenic fungus causing take-all on wheat. Both strains of pseudomonads synthesized relatively high amounts of Fe³⁺ chelators. The strains of bacilli were characterized by the very fast spreading on agar media. Furthermore, strain II21 was highly cyanogenic, and strain JC192 highly chitinolytic. Bacterization of winter wheat seeds (especially with strains III107 and JC192) significantly reduced the percentage of the plants infested with the pathogen in the 28 day glasshouse pot experiment. In the plot experiment, the winter wheat seeds were inoculated with a mixture of strains III107, II21 and JC192. Due to the bacterization the yield of wheat grain and straw was higher in comparison to the series with Ggt alone by 122% and 75%, respectively, but it amounted only to 45% and 43% of the control series not contaminated with Ggt. The decrease of percentage of wheat ears with weight less than 500 mg from 61% in Ggt-series to 25% in Ggt-bacterized-series, and especially the decrease of percentage of wheat ears with weight less than 200 mg from 43% to 14% additionally indicate the partial protection of the winter wheat against Ggt by the rhizobacteria. In the experimental series not contaminated with Ggt the percentage of these wheat ears fractions did not exceed 3% and 0.5%, respectively.
In this study, effects of topical applications of two plant growth promoting rhizobacteria (PGPR) strains and their combination (Bacillus BAI6, OSU142 and BAI6+0SUI42) on the rooting of 41B and Rupestris du Lot rootstocks were investigated. The results showed that none of the bacterial strains have significant effects on success rate at 41B and Rupestris du Lot alone, but BA16+0SU142 combination significantly increased the rooting rate and rooting degree of 41 B, and decreased the rooting rate and rooting degree of Rupestris du Lot compared with control. In addition, none of the applications had significant effects in number, length and weight of roots on cuttings of both 41B and Rupestris du Lot. Our results suggest that PGPR may have a great potential to stimulate the rooting of hardwood cuttings of grapevine rootstocks, with low rooting capability.
The influence of PGPR on the susceptibility of glasshouse cucumber and tomato to spider mites was studied. lt was found that plants treated with PGPR suppressed the development of mile populations on both studied crops. The effect was more evident for cucumber, as compared to tomato plants. Mite population was smaller by more than 40% on the leaves of the susceptible cucumber cultivar, Corona growing in the presence of rhizobacteria, as compared to that without bacteria. The development of spider mile population on the bacterized susceptible tomato cultivar, Romatos was more inhibited on young leaves (43%) than on older ones (34%). As the injury of plants progressed the level of inhibition was decreased.
Inoculation of wheat seeds with two strains of Pseudomonas fluorescens (III107 and II21) and two strains of Bacillus mycoides (JC192 and K184) isolated from winter wheat roots, as well as with one strain of P. fluorescens (ID13) isolated from oat roots, reduced the negative influence of Fusarium culmorum on winter wheat in a 28 day pot experiment. The bacterial strains (especially III107 and chitinolytic JC192) markedly increased the plant seedlings emergence and the plant biomass (the shoots weight up to 252%, and the roots weight up to 229%) in comparison to the experimental series with F. culmorum alone. Also in a microplot experiment the yield of grain and straw of winter wheat, inoculated with the bacterial strains (especially JC192 and III107) and growing in soil contaminated with F. culmorum, was higher (the grain yield up to 120%, and the straw yield up to 139%) than in a series with F. culmorum alone (100%). In both experiments the highly cyanogenic strain II21 was least effective. A linear correlation (r = 0.926) and a rank Spearman's correlation (rSp= 0.991), both significant at p<0.01, between the weight of plant biomass in the pot experiment and the yield of whole shoots in the microplot experiment were found. It suggests that the same mechanisms worked in both experiments, although with different intensity.
The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. Th e objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fl uorescens and Bacillus subtilis isolated from the maize (Zea mays L.) rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA), hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31), while two others were 98% identical to P. fl uorescens strain ATCC 13525, P. fl uorescens strain IAM 12022 (AK18 and AK45) and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38). Our gnotobiotic study showed signifi cant diff erences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting eff ects on rice.
In presented study the efficiency of bacteria preparations and growth regulators applied to one variety and mixed crops (barley + pea) depended on the level of nitrogen nutrition. Applying of Rhizobacterin on one variety barley crop against the background of 60 kg N·ha⁻¹ resulted in a maximum yield, while the maximum yield of pea was obtained after applying of Sapronit at dose of 30 kg N·ha⁻¹. At mixed crops the highest yield of plants was achieved when two components of the mixture (Saprofit + Rhizobacterin) were applied together with 30 kg N·ha⁻¹. Epin efficiency on one variety crop was the highest without N application whereas the second growth regulator Homobrassinolid was most effective at the background of 60 kg N·ha⁻¹. On the objects without nitrogen fertlization maximum increase of barley yield in mixed crop was noted after inoculation of pea seeds with Epin preparation. Whereas Homobrassinolid caused the highest increase of barley yield in variant without pea seed inoculation.
Rhizobacteria isolated from cotton roots exhibiting antagonism towards seedling blight and leaf blight of cotton were tested for their efficiency against the insect pest American bollworm (Helicoverpa armigera). The bioformulation developed using Bacillus subtilis (isolate DGL9) + chitin was found to be detrimental to the developmental stages of H. armigera (larva, pupa and adult) by causing larval mortality, pupal and adult malformation with reduced adult emergence. Generally, the larvae exhibited antifeeding behaviour when fed on bolls collected from rhizobacterial treatments. Hence, the developmental stages were altered leading to early pupation. Further, the efficacy of the isolate DGL9 was confirmed by culturing the bacteria in a suitable medium and incorporating the cell suspension and supernatant obtained form the broth culture in larval diet. The larvae fed to the diet exhibited defective developmental stages which was more significant in case of diet incorporated with supernatant. The percentage of pupal malformation, adult emergence and adult malformation was high at 96 h of incubation with the supernatant.
Efficacy of two strains of Pseudomonas aeruginosa (Pa-5 and IE-2) and aBacillus subtilis isolate alone or in conjunction with neem cake or Datura fastuosa was tested for the management of three soilborne root-infecting fungi including Macrophomina phaseolina, Fusarium solani and Rhizoctonia solani and the root-knot nematode, Meloidogyne javanica on uridbean. Biocontrol bacteria used in combination with either neem cake or D. fastuosa gave better control of the root-rot and root-knot infection with the enhancement of growth of uridbean compared to the use of either component alone. Neem cake 1 % w/w mixed with P. aeruginosa strain lE-2 caused greatest inhibition of the root-knot development due to M.javanica. P. aeruginosa and B. subtilis used with organic amendment also increased Bradyrhizobium-nodules in the root system.
Pot experiments were conducted to evaluate the possible roles of nitrogen fixation and/or enhanced mineral uptake by Azospirillum lipoferum and Bacillus polymexa inoculation in improving salt tolerance of maize plants. Plants were inoculated and grown under salt stress (osmotic potential: -0.3, -0.6, -0.9 and -1.2 Mpa). Both microorganisms were able to fix nitrogen up to -0.9 Mpa salinity level accompanied with increased total N-yield compared with the control plants. In order to investigate the role of bacterial inoculation on enhanced mineral uptake, the growth and some physiological parameters of inoculated plants were compared with plants fertilized by K and P foliar application. Plant inoculation with the N₂-fixers or plant spraying with KH₂PO₄ resulted in an increase in fresh and dry matter as well as water content of plants. Treated plants exhibited changed plant mineral content which was associated with increased Mg/K and decreased P/K, Ca/K and Na/K ratios. This was accompanied by accumulation of soluble sugars, amino acids in shoots and roots of plants resulting in a concomitant increase in the osmotic potential of the cell sap as a possible mechanism of adaptation to salinity.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.