Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  regulatory mechanism
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Linear models based on proportionality between variables have been commonly applied in biology and medicine but in many cases they do not describe correctly the complex relationships of living organisms and now are being replaced by nonlinear theories of deterministic chaos. Recent advances in molecular biology and genome sequencing may lead to a simplistic view that all life processes in a cell, or in the whole organism, are strictly and in a linear fashion controlled by genes. In reality, the existing phenotype arises from a complex interaction of the genome and various environmental factors. Regulation of gene expression in the animal organism occurs at the level of epigenetic DNA modification, RNA transcription, mRNA translation, and many additional alterations of nascent proteins. The process of transcription is highly complicated and includes hundreds of transcription factors, enhancers and silencers, as well as various species of low molecular mass RNAs. In addition, alternative splicing or mRNA editing can generate a family of polypeptides from a single gene. Rearrangement of coding DNA sequences during somatic recombination is the source of great variability in the structure of immunoglobulins and some other proteins. The process of rearrangement of immunoglobulin genes, or such phenomena as parental imprinting of some genes, appear to occur in a random fashion. Therefore, it seems that the mechanism of genetic information flow from DNA to mature proteins does not fit the category of linear relationship based on simple reductionism or hard determinism but would be probably better described by nonlinear models, such as deterministic chaos.
The purpose of this study was to illuminate the effects of fulvic acid in plants’ stress signaling pathway. 2.0 mg/l fulvic acid was sprayed on soybean leaves for 3 days at 12 h intervals, followed by treatment of 150 mM NaCl or exposed to heat stress at 35°C for 2 h over 2 days. Pre-treatment with fulvic acid increased the relative water content (RWC), antioxidant enzyme, isoenzyme activities (SOD, APX, GST), as well as alleviated the stress-induced oxidative damage by decreasing the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). In addition, the application of fulvic acid under salt stress induced rubisco expression only at 12 h, while it induced the expression of cytochrome c oxidase at 6 h and 12 h. On the other hand, fulvic acid under heat stress induced significant expression of both rubisco and cytochrome c oxidase at 6 h and 12 h. However, under high salinity conditions, fulvic acid suppressed the transcript levels of Hsp70, while it induced increases in Hsp70 levels under heat treatment at 6 h. As a result, in this study, fulvic acid played the role of a regulator and stimulant in stress response of soybean leaves.
It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and exogenous compounds were found to modulate the activity of both types of calcium channels, ryanodine and dihydropyridine receptors. These compounds, by changing the Ca2+ transport activity of these channels, are able to influence intracellular Ca2+ homeostasis. As a result not only the overall Ca2+ concentration becomes affected but also spatial distribution of this ion in the cell. In cardiac and skeletal muscles the release of Ca2+ from internal stores is triggered by the same transport proteins, although by their specific isoforms. Concomitantly, heart and skeletal muscle specific regulatory mechanisms are different.
Morphological analysis revealed destructive changes in the testicular tissue of bank volesMyodes glareolus Schreber, 1780 during different phases of a population fluctuation. The most pronounced changes were observed at the peak phase, when karyolysis of the Leydig cells and degeneration of spermatogenous cells were recorded in 90% of males. During the increase phase, depression of androgenous testicular function was observed in only 50% of males and atrophy of seminiferous tubules in 30% of males. During the low phase, the proportion of males with destructive changes in generative and endocrine portions of the testicles did not exceed 30%. Morphometrical analysis of spermatozoa demonstrated that the size of the head and nucleus were related to the phase of the population fluctuation. Lengths of the middle and main parts of the spermatozoon tail, as well as the size of the acrosome, were not related to phase of the population fluctuation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.