Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  reactive nitrogen species
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Using the electromobility shift assay (EMSA) in the rat myoblast system, the activation of transcription factor NF-B by reactive nitrogen species was evaluated. Two distinct patterns of activation were demonstrated. Whereas NO donor, SNAP, activated NF-B in the classical pathway, which led to a transient response, NF-B activation by peroxynitrite donor, SIN-1, was mediated by an alternative pathway, which has been demonstrated in previous works to involve tyrosine nitration of the NF-B inhibitory protein I-Balpha. This led to a constitutive non-transient activation of NF-B and a prolonged inflammatory reaction. Lymphocytes exposed to mild intensity of cigarette smoke for 8 h, which activated NF-B, exhibited a decrease in the fraction of apoptotic cells from 27% to 19% compared with lymphocytes exposed to atmospheric air, using the FACS Annexin V assay. This also has been shown in previous works to be mediated by peroxynitrite. Thus, mild exposure to cigarette smoke induces NF-B activation, which can attenuate apoptosis in human lymphocytes and lead to prolonged inflammatory response. A possible proposed mechanism for induction of chronic inflammatory response may involve peroxynitrite-induced activation of NF-B.
The variability of the marine boundary layer parameters over the Baltic Sea and its sub-basins and their impact on the 6 h, monthly or seasonal deposition of oxidized nitrogen compounds was studied using results of the Hilatar chemistrytransport model, the 6th hour forecasts of the HIRLAM weather prediction model and meteorological measurement data. The monthly load of oxidized nitrogen was highest in the winters of 1993–1995 and 2000, and lowest in 1996–1997 and 2005; no trend was detected. Short-time correlations were low, but a significant correlation of the monthly deposition with the NAO index and ice-season was found over northern sub-basins.
 The novel MAO-B inhibitor PF9601N, its cytochrome P450-dependent metabolite FA72 and l-deprenyl were studied as potential peroxynitrite (ONOO-) scavengers and nitric oxide synthase (NOS) inhibitors. The scavenging activity of these compounds was evaluated by measuring the oxygen consumption through peroxynitrite-mediated oxidation of both linoleic acid and brain homogenate. FA72, PF9601N and l-deprenyl caused a concentration-dependent inhibition of ONOO--induced linoleic acid oxidation with an IC50 value of 60.2 μM, 82.8 μM and 235.8 μM, respectively. FA72 was the most potent also in inhibiting ONOO--induced brain homogenate oxidation with an IC50 value of 99.4 μM, while PF9601N and l-deprenyl resulted weaker inhibitors in the same experimental model, showing an IC50 value of 164.8 and 112.0 μM, respectively. Furthermore, both the novel MAO-B inhibitor as well as its metabolite were able to strongly inhibit rat brain neuronal NOS (IC50 of 183 μM and 192 μM, respectively), while l-deprenyl at the highest concentration used (3 mM), caused only a slight decrease of the enzyme activity. Moreover, inducible NOS was strongly inhibited by FA72 only. All these results suggest that PF9601N could be a promising therapeutic agent in neurodegenerative disorders such as Parkinson's disease.
Although multiple factors are associated with cardiovascular pathology, there is now an impressive body of evidence that free radicals and nonradical oxidants might cause a number of cardiovascular dysfunctions. Both direct damage to cellular com­ponents and/or oxidation of extracellular biomolecules, e.g. LDL, might be involved in the aetiology of cardiovascular diseases. The key molecules in this process seem to be iron and copper ions that catalyse formation of the highly reactive hydroxyl radi­cal. Chelation of iron ions has a beneficial effect on the processes associated with the development of atherosclerosis and formation of post-ischemic lesions. These find­ings are indirectly supported by the increasing body of evidence that stored body iron plays a crucial role in pathogenesis of atherosclerosis and ischemia/reperfusion injury.
This study investigates the effect of superoxide anion radical (02); hydrogen peroxide (H202), nitric oxide (NO) and peroxynitrite (ONOO), which often accompany inflamed, endotoxic or exercised muscle on insulin action in DTsatellite cells. In order to induce quiescence, rat L6 myoblasts were subjected to transition from G2/M to Gl phase by the application of serum-reduced medium. Insulin stimulating effect on cell mitogenicity and anabolism was dose-dependent and hormetic. Application of H202 alone enhanced protein synthesis with dose-dependency but had no effect on mitogenicity. While insulin and H202 were used together, (i.e. at low H202 dose) insulin action was not affected regardless of the combination used, except the loss of dose- dependency on protein synthesis, but for 100 μM of H202 insulin action ceased abruptly and totally. Since there were no additive effects of both factors, we conclude that H202 may contribute to the insulin-induced anabolic reaction, however, below 100 The application of 02- donor stimulated protein synthesis and slightly inhibited [cell proliferation] though dose-response pattern was not observed suggesting apparent limitations to 02- diffusion into the cell. Moreover 02- inhibited both insulin-enhanced mitogenicity and protein synthesis by abrogating dose-response fashion of insulin action. The introduction of NO and ONOO- donors alone to control systems inhibited cell proliferation in a dose-dependent manner having no effect on protein synthesis (except the low doses of SIN-1). Insulin-stimulated syntheses of both DNA and protein were inhibited in a dose- dependent manner by SIN-1 (NO and 02' donor). In the presence of SNP (NO donor) mitogenic effect of insulin was abolished whereas protein synthesis was diminished only by the highest SNP concentration used (0.5 mM). Taken together, these results have shown that hydrogen peroxide (H202), nitric oxide (NO) and peroxynitrite (ONOO ) provide a good explanation for developing resistance to growth promoting activity of insulin in satellite cells under conditions of oxidant stress.
The aim of this study was to evaluate the therapeutic potential of oxidative stress (OS) reduction by using pyridoindole (PI) antioxidants in adjuvant arthritis (AA). The substances tested were stobadine dipalmitate (STB) and SMe1. AA was used as animal model. The experiments included healthy animals, control arthritic animals and arthritic animals with administration of PI in the oral daily dose of 15 mg/kg b.m during 28 experimental days. The rats were sacrificed on day 28. Clinical and biochemical parameters were determined. The effect of PI administration was evaluated on the basis of the following parameters: (a) arthritis (volume of hind paws - HPW, change of animal body mass - CBM), (b) OS (chemiluminescence of whole blood - CWB, levels of thiobarbituric acid reacting substance - TBARS and of HNE- and MDA-protein adducts in plasma and activity of γ-glutamyltransferase (GGT) in hind paw joint homogenates). The PI studied significantly increased the CBM of animals and corrected the HPW. STB also significantly decreased the activity of GGT in joint homogenates. SMe1 was more effective in decreasing plasmatic TBARS levels, but STB was more effective in reducing plasmatic HNE- and MDA-protein adducts. The assay for HNE- and MDA-adducts in plasma as a function of time was applied for the first time in AA. STB markedly decreased spontaneous and PMA-stimulated CWB and reduced neutrophil count. In summary, STB was more effective than SMe1 in reducing OS in AA. Our results showed that the reduction of OS in arthritis also corrected the clinical manifestations of the disease.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.