Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  protein transport
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Syntaxin 8 has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These have been shown to function as the machinery for the homotypic fusion of late endosomes. Recently, we showed that syntaxins 7 and 8 cycle through the plasma membrane, and that the di-leucine-based motifs in the cytoplasmic domain of syntaxins 7 and 8 respectively function in their endocytic and exocytic processes. However, we could not elucidate the mechanism by which syntaxin 8 cycles through the plasma membrane. In this study, we constructed several different syntaxin 8 molecules by mutating putative di-leucine-based motifs, and analyzed their intracellular localization and trafficking. We found a di-leucine-based motif in the cytoplasmic domain of syntaxin 8. It is similar to that of syntaxin 7, and functions in its endocytosis. These results suggest that in the cytoplasmic domain, syntaxin 8 has two functionally distinct di-leucine-based motifs that act independently in its endocytic and exocytic processes. This is the first report on two di-leucine-based motifs in the same molecule acting independently in distinct transport pathways.
Mitochondria are multifunctional organelles, primarily involved in the fundamental biological process of respiration. The efficient functioning of mitochondria depends on the proper transport, sorting, and assembly of mitochondrial proteins that originate either from nuclear or mitochondrial genomes. Both nuclear and mitochondrial gene defects that result in pathological variants of proteins have been implicated in a variety of mitochondrial diseases. The nuclear‑encoded proteins make up the large majority of proteins involved in the formation of mitochondria, including the respiratory chain complexes. The ubiquitin proteasome system (UPS) in the cytosol is involved in degradation of cellular proteins and maintaining protein homeostasis. By multiple lines of evidence, we have demonstrated the contribution of the UPS to mitochondrial protein quality control. The UPS degrades a portion of mitochondrial proteins, including mislocalized proteins, in both yeast and mammalian systems. Furthermore, mislocalization of mitochondrial proteins increases the ability of the proteasome to degrade cellular proteins. Thus, the UPS constitutes an important factor that affects the mitochondrial protein import, influences the mitochondrial proteome, and links the mitochondrial status with regulation of cellular protein homeostasis. Interestingly, pathologic variants of mitochondrial proteins can be mistargeted and fully degraded by the proteasome before they reach their final destination inside mitochondria. Inhibition of proteasomal degradation by commonly used proteasome inhibitors results in rescue of proteins and their import into the mitochondria. Thus, UPS inhibition can provide a benefit to malfunctioning mitochondria and cells. We propose that targeting the UPS should be considered as a therapeutic strategy for mitochondrial diseases.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.