Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  protein interaction
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/.
Regulation of muscle contraction is a very cooperative process. The presence of tropomyosin on the thin filament is both necessary and sufficient for cooperativity to occur. Data recently obtained with various tropomyosin isoforms and mutants help us to understand better the structural requirements in the thin filament for cooperative protein interactions. Forming an end-to-end overlap between neighboring tropomyosin molecules is not necessary for the cooperativity of the thin filament acti­vation. When direct contacts between tropomyosin molecules are disrupted, the conformational changes in the filament are most probably transmitted cooperatively through actin subunits, although the exact nature of these changes is not known. The function of tropomyosin ends, alternatively expressed in various isoforms, is to confer specific actin affinity. Tropomyosin's affinity or actin is directly related to the size of the apparent cooperative unit defined as the number of actin subunits turned into the active state by binding of one myosin head. Inner sequences of tropomyosin, particu­larly actin-binding periods 3 to 5, play crucial role in myosin-induced activation of the thin filament. A plausible mechanism of tropomyosin function in this process is that inner tropomyosin regions are either specifically recognized by myosin or they define the right actin conformation required for tropomyosin movement from its blocking position.
The high mobility group (HMG) proteins are abundant non-histone components of eukaryotic chromatin. The presence of C-terminal acidic tails is a common feature of the majority of HMG proteins. Although the biological significance of the acidic do­mains is not clear, they are conferring conformational and metabolic stability to the proteins in vitro. Moreover, the length and net charge of the acidic tails affect the strength of HMG protein interaction with DNA. Synthesis of an insect HMG protein by standard recombinant technology in bacteria leads to a mixture of the intact protein (cHMG1a-(1-113) (I)) and a series of its degradation products truncated at the C tail: cHMGla-(l-lll) (II); cHMG1a-(1-110) (III); cHMG1a-(1-109) (IV); cHMG1a-(1-108) (V); cHMG1a-(1-107) (VI); cHMG1a-(1-106) (VII). The proteins differ from each other only by the number of amino-acid residues at the C-terminal tail. We used H/D ex­change mass spectrometry to characterize the stability of the proteins directly in their mixture. The results show that the proteins I-V and VII have very similar conforma­tions. The protein VI is less compact and exchanges its protons faster than the others. It may be concluded that the C-terminal tail influences the conformation of the cHMGla protein and that individual residues in this part of the protein play a key role in its compactness.
Base excision repair (BER) pathway executed by a complex network of proteins is the major system responsible for the removal of damaged DNA bases and repair of DNA single strand breaks (SSBs) generated by environmental agents, such as certain cancer therapies, or arising spontaneously during cellular metabolism. Both modified DNA bases and SSBs with ends other than 3'-OH and 5'-P are repaired either by replacement of a single or of more nucleotides in the processes called short-patch BER (SP-BER) or long-patch BER (LP-BER), respectively. In contrast to Escherichia coli cells, in human ones, the two BER sub-pathways are operated by different sets of proteins. In this review the selection between SP- and LP-BER and mutations in BER and end-processors genes and their contribution to bacterial mutagenesis and human diseases are considered.
W oparciu o proste modele enzymatycznego trawienia białka - kazeiny in vitro oznaczono stopień oddziaływania między wprowadzonymi do układu azotanami a wybranymi polifenolami. Aktywność polifenoli określano na podstawie ilości azotanów (III) i (V) przechodzących do dializatu. Stwierdzono, że interakcje polifenoli zachodzą głównie z azotanami (III).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.