Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  prostanoid
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We have previously demonstrated that chronic exposure to low-dose of mercury induced endothelial dysfunction and increased vasoconstrictor responses. The aim of this work was to investigate if mercury exposure alters contractile prostanoids production from cyclooxygenase-2 (COX-2) and its contribution to phenylephrine responses. For this, aortic segments from 3-month old Wistar rats daily treated with HgCl2 (1st dose 4.6 µg/kg, subsequent dose 0.07 µg/kg/day, i.m.) or vehicle for 30 days were used. Mercury treatment did not affect systolic blood pressure but increased phenylephrine-induced vasoconstriction. The non selective COX inhibitor, indomethacin (10 µmol/l) reduced the response to phenylephrine more in aortic segments from mercury-treated than control rats. The selective COX-2 inhibitor NS 398 (1 µmol/l), the thromboxane A2/prostaglandin H2 receptor (TP) antagonist SQ 29,548 (1 µmol/l), the TXA2 synthase inhibitor furegrelate (1 µmol/l), the EP1 receptor antagonist SC 19220 (1 µmol/l) and the AT1 receptor antagonist losartan (10 µmol/l) reduced phenylephrine response only in vessels from mercury-treated rats. TXA2 and PGE2 levels were greater in the incubation medium of vessels from treated than untreated rats; NS 398 decreased these levels only in the mercury group. COX-2 protein was localized in adventitial and endothelial cells. Aortic COX-2 mRNA expression and plasma angiotensin converting enzyme activity were greater in mercury-treated rats. These results suggest that treatment with low doses of mercury increases the release of COX-2-derived vasoconstrictor prostanoids and its participation in phenylephrine responses. The increased activation of the renin-angiotensin system after mercury treatment might be associated to this increased COX-2 activity.
Curcumin regulates prostaglandin (PG) synthesis in a variety of cells. PGE2 and PGI2 are generated from arachidonic acid (AA) by cyclooxygenases 1 and 2 (COX-1 and COX-2) and the synthase (PGES and PGI2S) pathways. This study evaluates the in vitro effect of curcumin on the expression of COX-1, COX-2, PGI2S and microsomal PGES-1 (mPGES-1), and the production of PGE2 and PGI2 in human coronary artery endothelial cells (HCAEC). HCAEC monolayers were incubated with curcumin and the expression of mRNA, protein and the production of PGI2 and PGE2 were quantified. Incubation of HCAEC with curcumin led to a time and concentration-dependent increases in COX-2 mRNA with a small but significant decrease in COX-1 mRNA expression. Curcumin also stimulated the expression of PGI2S and mPGES-1 mRNA. Although curcumin stimulated COX-2, PGI2S and mPGES-1 gene expression, it failed to increase PGI2 or PGE2 production. Interestingly, supplementation of the culture medium with AA increased prostanoid production by both quiescent and curcumin-treated cells. However, in comparison to the quiescent cells, the prostanoid production by curcumin-treated cells was markedly enhanced as AA concentrations in the medium were increased, and the enhanced prostanoid production was blocked by the presence of COX-2 specific inhibitor. Taken together, these results suggest that curcumin regulates prostanoid homeostasis in HCAEC by modulating multiple steps including the expression of COX-1, COX-2, PGI2S and mPGES-1.
Ang II-induced endothelial dysfunction is associated with perivascular inflammation and increased superoxide production in the vascular wall. The present study examined the role of cyclo-oxygenase (COX)-synthetized eicosanoids in the pathogenesis of Ang II-induced endothelial dysfunction in transgenic rats harboring mouse renin-2 gene (mREN2 rats). Five-to-six-week-old, heterozygous mREN2 rats received the following drug regimens for 8 weeks: 1) vehicle, 2) cyclo-oxygenase-2 (COX-2) inhibitor (MF-tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2(5H)-furanone], 14 mg/kg p.o.), 3) COX-l/COX-2 inhibitor (sulindac, 14 mg/kg p.o.), 4) angiotensin II receptor antagonist (losartan 40 mg/kg p.o.). Normotensive Sprague Dawley (SD) rats served as controls. In vitro vascular responses of the descending aorta and renal artery were studied using organ bath system. mREN2 rats developed pronounced hypertension which was associated with impaired endothelium-dependent and endothelium-independent vascular relaxations in the aorta. In contrast, the relaxation responses of the renal arteries remained largely unchanged in mREN2 rats. Urinary NOx excretion, a marker of total body NO generation, was also decreased in mREN2 rats. Neither non-selective COX inhibitor sulindac nor COX-2 selective MF-tricyclic were capable of preventing Ang II- induced hypertension or endothelial dysfunction in mREN2 rats, whereas ATi receptor antagonist losartan completely normalized blood pressure, vascular relaxation responses as well as urinary NOx excretion. Our findings indicate that NO synthesis and/or bioavailability as well as the sensitivity of arterial smooth muscle cells to NO are decreased in mREN2 rats. The present study also demonstrated that COX does not play a central role in the pathogenesis of Ang II-induced endothelial dysfunction in mREN2 rats.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.