Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  posthumic lake
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The ratio and rates of autotrophic and heterotrophic pathways of organic matter cycles constitute the basic functions of aquatic ecosystem and humic lakes are unique in this respect. The autotrophic and heterotrophic production, the food web structure and the role of microbial communities in three humic lakes (area 1.3–9.2 ha) were studied. The abundance of bacteria, autotrophic picoplankton (APP), nanoflagellates (NF), ciliates, phytoplankton, rotifer and crustacean zooplankton as well as chlorophyll a and primary (¹⁴C method) and bacterial production (³H–thymidine method) were measured. The lakes differed in humic matter content, water colour, pH and hydrology. Two lakes were acidic (pH 5.2–4.9) with different dissolved organic carbon (DOC) content: oligo/mesohumic – 7.1 mg C L⁻¹ , and polyhumic lake – 21 mg C L⁻¹. Due to draining of surrounding meadows, the third lake – formerly humic – experienced changes in the hydrological regime together with liming and fertilisation. Despite low DOC, the oligohumic lake resembled a low productive, typically humic, acidic lake with dominating bacterial production. The lake was characterised by the highest crustaceans biomass and very variable chlorophyll a concentration (between 1.5 and 71 mg Chl a m⁻³). The polyhumic lake had the highest mean and maximal chlorophyll a content but the lowest crustacean biomass, and functioned more like a eutrophic lake. The formerly humic lake had lost probably most of its humic features and experienced a eutrophication process that resulted in a food web structure typical of a shallow eutrophic pond-like environment. The mean chlorophyll a concentration there was at the same level as in an oligohumic lake, but the variability was much lower. This lake can be considered as an example of the posthumic lakes abundant in the managed wetland regions. Microbial communities were numerous in both humic lakes, with bacteria prevailing in microbial biomass in the oligo-humic and APP in the polyhumic lake. In the former humic lake the microbial communities, especially APP, seemed to play a lesser role, while the whole planktonic food web was more balanced. The results demonstrated that uncontrolled drainage and reclamation of wetland can be detrimental to biodiversity of small, mid-forest lakes. Although biodiversity in almost all plankton groups was the highest in the posthumic lake but this lake lacked rare species typical of humic acidic lakes like: Gonyostomum semen, Dictyosphaerium sphagnale from phytoplankton or Holopedium gibberum from crustacean zooplankton. Instead eurytopic species, common in eutrophic waters, were present.
The classic description of a coloured lake implies low productivity (Nauman 1921; cited in Jones 1922). Wetzel (1975) initially classified dystrophic lakes as oligotrophic, but later stated that dystrophy represents a subset of trophic continuum, from oligotrophy to eutrophy, rather than a parallel concept (Wetzel 2001). Other more recent studies have demonstrated that many dystrophic lakes are mesotrophic or even eutrophic (Jones 1992, Keskitalo and Eloranta 1999). Furthermore, the pH of their water can range between 4.1 and 8.0 (Keskitalo and Eloranta 1999), and it is clear that this property should be treated as an additional factor affecting their trophic state. Our own findings from humic acidic lakes of different trophic states and from one posthumic lake (originally humic, now eutrophic with pH = 7), together with data from the literature describing about 40 brown-water lakes, can be used to verify general statements concerning microbial ecology paradigms for humic waters: 1) the bacterial to phytoplankton biomass ratio is generally high and increases with lake water colour; 2) there is a positive relationship between bacterial biomass and the concentration of organic matter expressed in dissolved organic carbon units and as water colour; 3) bacterial production is generally higher than primary production; 4) there is a good correlation between bacterial production and humic matter content; 5) the pH of the water/sediments can modify these relationships by accelerating the rates between the variables mentioned above in neutral pH and/or limiting them in low pH. In this review we show that these statements are not always confirmed by detailed analyses of the available data, suggesting that in addition to the concentration of humic matter, the lake productivity, expressed as chlorophyll a and primary production, also influences the ratios between the compared variables. We also demonstrate that despite being weaker, the relationships between phytoplankton-related variables and bacterial abundance and production in low pH lakes are similar to those in circum-neutral humic waters. In addition, we show that the conversion factors and the proportion of active bacterial cells greatly influence all of the aforementioned relationships.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.