Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  plant growth promoting rhizobacteria
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of the research was to examine the effect of rhizospheric bacteria Azotobacter chroococcum, Pseudomonas fluorescens (strains 1 and 2) and Bacillus subtilis on the growth and yield of onion and on the microorganisms in the rhizosphere of onion. The ability of microorganisms to produce indole-acetic acid (IAA), siderophores and to solubilize tricalcium phosphate (TCP) was also assessed. The experiment was conducted in field conditions, in chernozem type of soil. Bacillus subtilis was the best producer of IAA, whereas Pseudomonas fluorescens strains were better at producing siderophores and solubilizing phosphates. The longest seedling was observed with the application of Azotobacter chroococcum. The height of the plants sixty days after sowing was greater in all the inoculated variants than in the control. The highest onion yield was observed in Bacillus subtilis and Azotobacter chroococcum variants. The total number of bacteria and the number of Azotobacter chroococcum were larger in all the inoculated variants then in the control. The number of fungi decreased in most of the inoculated variants, whereas the number of actinomycetes decreased or remained the same.
Fluorescent pseudomonads are among the most influencing plant growth-promoting rhizobacteria in plants rhizosphere. In this research work the plant growth-promoting activities of 40 different strains of Pseudomonas fluorescens and Pseudomonas putida, previously isolated from the rhizosphere of wheat (Triticum aestivum L.) and canola (Brassica napus L.) and maintained in the microbial collection of Soil and Water Research Institute, Tehran, Iran, were evaluated. The ability of bacteria to produce auxin and siderophores and utilizing P sources with little solubility was determined. Four strains of Wp1 (P. putida), Cfp10 (Pseudomonas sp.), Wp150 (P. putida), and Wp159 (P. putida) were able to grow in the DF medium with ACC. Thirty percent of bacterial isolates from canola rhizosphere and 33% of bacterial isolates from wheat rhizosphere were able to produce HCN. The results indicate that most of the bacteria, tested in the experiment, have plant growth-promoting activities. This is the first time that such PGPR species are isolated from the Iranian soils. With respect to their great biological capacities they can be used for wheat and canola inoculation in different parts of the world, which is of very important agricultural implications.
This study was conducted to determine the effect of different plant growth promoting rhizobacteria (PGPR) strains on growth and quality of cauliflower transplants under greenhouse conditions. The strains of Bacillus megaterium TV-3D, B. megaterium TV-91C, Pantoea agglomerans RK-92, B. subtilis TV-17C, B. megaterium TV-87A, B. megaterium KBA-10 were used in this study. The results of this study showed that different bacterial inoculations increased plant growth parameters such as fresh shoot weight, dry shoot weight, root diameter, root length, fresh root weight, dry root weight, plant height, stem diameter, leaf area and chlorophyll contents of cauliflower transplant respectively. Except for abscisic acid (ABA), the values of gibberellic acid (GA), salicylic acid (SA), indole acetic acid (IAA) was increased by ratio of 23.64, 89.54 and 25.63%, respectively in compared to the control by application of B. megaterium KBA-10 and P. agglomerans RK-92. The amount of organic acids with B. subtilis TV-17C PGPR applications have increased at a ranging ratio from 9.63 to 186.02%. Also, PGPR inoculations increased the macro and micro nutrient content of cauliflower transplants. As a result, the use of bacteria treatments may provide a means of improving transplant growth and quality in cauliflower.
In this study, effects of topical applications of two plant growth promoting rhizobacteria (PGPR) strains and their combination (Bacillus BAI6, OSU142 and BAI6+0SUI42) on the rooting of 41B and Rupestris du Lot rootstocks were investigated. The results showed that none of the bacterial strains have significant effects on success rate at 41B and Rupestris du Lot alone, but BA16+0SU142 combination significantly increased the rooting rate and rooting degree of 41 B, and decreased the rooting rate and rooting degree of Rupestris du Lot compared with control. In addition, none of the applications had significant effects in number, length and weight of roots on cuttings of both 41B and Rupestris du Lot. Our results suggest that PGPR may have a great potential to stimulate the rooting of hardwood cuttings of grapevine rootstocks, with low rooting capability.
The effect of inoculating single cultures of plant growth-promoting rhizobacteria (PGPR) on development of white beans seedling (Phaseolus vulgaris) was analyzed. Five PGPR were isolated from the rhizosphere of Okra plants and were assessed for abilities to solubilise phosphate and produce indole acetic acid (IAA). The phosphate solubilising index ranged from 6-10 while the concentration of IAA ranged from 17.48mg/l to 27.43mg/l. Serratia sp. produced the highest concentration of IAA (27.43mg/l) and had the highest solubilisation index (10mm). Bacillus sp. produced the least amount of IAA (17.48mg/l) while Staphylococcus sp. had the least solubilisation index (6mm). The highest percentage germination of 83.3% was observed in the seedling inoculated with Bacillus sp. The effect of PGPR on root and shoot elongation was studied hydroponically for 7 days. Significant increases (P< 0.05) in root elongation were observed.. The highest seedling root length (18.47cm) and shoot length (19.17cm) were observed with inoculation of Staphylococcus sp. and Bacillus sp. respectively. The use of these bacteria as bio-inoculants could be a sustainable practice to facilitate nutrient supply to white beans seedlings.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.