Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  particle size distribution
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of this paper was to show how the shape of sand particles affects the results of particle size distribution obtained by the laser diffraction method. On the basis of the results obtained one can conclude: the shape of the investigated particles influences particle size distribution obtained by the laser diffraction method. This phenomenon occurs in the sand fraction, as shown in our investigation. The importance of this effect depends on the type of the measured material and on the aim of the investigations. For most researchers in soil science and sedimentology who investigate sand fractions, this impact can be negligible. Further investigations with other soil and sediment fractions are needed.
The prediction of cation exchange capacity from readily available soil properties remains a challenge. In this study, firstly, we extended the entire particle size distribution curve from limited soil texture data and, at the second step, calculated the fractal parameters from the particle size distribution curve. Three pedotransfer functions were developed based on soil properties, parameters of particle size distribution curve model and fractal parameters of particle size distribution curve fractal model using the artificial neural networks technique. 1 662 soil samples were collected and separated into eight groups. Particle size distribution curve model parameters were estimated from limited soil texture data by the Skaggs method and fractal parameters were calculated by Bird model. Using particle size distribution curve model parameters and fractal parameters in the pedotransfer functions resulted in improvements of cation exchange capacity predictions. The pedotransfer functions that used fractal parameters as predictors performed better than the those which used particle size distribution curve model parameters. This can be related to the non-linear relationship between cation exchange capacity and fractal parameters. Partitioning the soil samples significantly increased the accuracy and reliability of the pedotransfer functions. Substantial improvement was achieved by utilising fractal parameters in the clusters.
There are various methods to assess soil erodibility for wind erosion. This paper focuses on aggregate analysis by a laser particle sizer ANALYSETTE 22 (FRITSCH GmbH), made to determine the size distribution of soil particles detached by wind (deflated particles). Ten soil samples, trapped along the same length of the erosion surface (150–155 m) but at different wind speeds, were analysed. The soil was sampled from a flat, smooth area without vegetation cover or soil crust, not affected by the impact of windbreaks or other barriers, from a depth of maximum 2.5 cm. Prior to analysis the samples were prepared according to the relevant specifications. An experiment was also conducted using a device that enables characterisation of the vertical movement of the deflated material. The trapped samples showed no differences in particle size and the proportions of size fractions at different hourly average wind speeds. It was observed that most of particles travelling in saltation mode (size 50–500 μm) – 58–70% – moved vertically up to 26 cm above the soil surface. At greater heights, particles moving in suspension mode (floating in the air; size < 100 μm) accounted for up to 90% of the samples. This result suggests that the boundary between the two modes of the vertical movement of deflated soil particles lies at about 25 cm above the soil surface.
For several years now the Polish Normalisation Committee (PKN) has been angaged in the process of introduction (and implementation) of international standards complying with the Internationsl Standard Organsation (ISO) into the set of of Polish Standards.At present, in the PKN Commission of Soil Physics, a number of such standards are being prepared (translated) -including a very comprehensive standard dealing with partiele size distribution determination in soil material-ISO 11277 [6], Some principles and requirements included in this standard differ significantly from those commonly accepted and widely in use now in numerous pedologie laboratories in Poland [7,8]. Below there are some of the most important differences: (1 ) the requirement to remove organic matter from test samples (using 30% v/v solution of H2O2), (2) the requirement to remove water soluble salts and gypsum (to electrical conductivity 0,4 dS/m), (3) sample dispersion process must be longer than 18 hours. Many other requirements, of relatively lesser importance, in many cases also do not correlate with those commonly accepted in our laboratories.
12
63%
Carbonation mud contains CaCO3 and aggregated or adsorbed substances from sugar beet raw juice. The precipitate can be characterised as a polydisperse system. Large volumes of carbonation mud predetermine its use as a fertilizer. Other possibilities of utilization are tested – e.g. addition in animal feed mixtures, application as paper, plastic and rubber fillers, and usage for the building industry and for desulphurization of combustion gases. Re-using of carbonation mud in sugar technology enables to decrease lime consumption in a sugar factory and to minimize carbonation mud production. It involves economic aspects and environmental effects (decreasing lime stone mining and limiting carbonation mud production). For these feasible internal or external applications of carbonation mud it is necessary to know size distribution in advance. The research work was aimed at particle size distribution measurement of carbonation mud suspension, which was separated in hydrocyclones used in MZ-technology. This low-cost sugar juice purification method is based on re-using carbonation mud and following separation of mud particles. Authors have chosen an image analysis method (system LUCIA) combined with microscopic observation for particle equivalent diameter determination. At first it was necessary to work out original measuring methodology for carbonation mud, it includes choosing suitable object-lenses, design of lightning, preparing suitable subroutine in which values of contrast and threshold are defined, etc. From these size data the particle size distribution was calculated. We detected that the industrial method for the preparation of input mud suspension was not fine enough and an amount of small particles increased in comparison with the unfiltered 1st carbonation juice. Bottom output suspension of hydrocyclones was of worse quality with small particles than the 1st carbonation juice as well. Hydrocyclones did not affect small particles. A normality of size distribution of particles from input and output suspensions in MZ-technology was tested. It can be characterised by normal distribution function for volume fraction xV or by log-normal distribution function for frequency of particles, as to input particles and upper output particles of hydrocyclones. The measured results will be groundwork for next carbonation mud applications.
The subject of the research was unidimensional indices (characteristics) of mineral soil particle size distribution: mass fractal dimension of soil particle size distribution, grain-size distribution index, mean particle diameter and the product of the two latter. Among the four above-mentioned indices, the three former are known from previous studies and the latter was proposed by the authors. The work is an attempt to answer the question which of these indices best describes the granulometric composition of mineral soils as a factor differentiating the species composition of vegetation. The experimental area was a one hectare fallow composed of soils of five different tex-tural classes. The ruderal plant cover of the fallow was mechanically destroyed and several dozen semi-natural grassland species were sown on bare soil. The seeds were thoroughly mixed and evenly distributed over the entire experimental area. Then, 39 permanent plots were regularly deployed across the experimental area. In the following year, the frequency of the emerging seedlings and juveniles of the sown plant species was estimated and the texture of the soil surface layer was ana-lysed in the permanent plots. Statistical analysis performed by fuzzy set ordination method indicated that the product of grain-size distribution index and mean particle diameter is the most appropriate unidimensional granulometric characteristic of the soil particle size distribution as a plant commu-nity assembly driver.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.