Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  open field exposure
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The hippocampus plays a role in new learning, memory and emotion and is a component of the neuroanatomical stress circuit. The structure is involved in terminating hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress and attenuates stress responses by shutting off this axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor TrkA following acute and chronic open-field stress were studied in CA1-CA3 and the DG of the hippocampus. The material consisted of 21 male adult rats divided into three groups: nonstressed (control) animals and rats exposed to acute (15 min once) and chronic (15 min daily for 21 days) aversive stimulation (open-field exposure). The brains were stained with use of immunohistochemical methods for c-Fos, NGF or TrkA. In the animals exposed to acute open-field stress the number of c-Fos-, TrkAand NGF-ir cells was higher in all the structures studied than in the control animals. However they were differentiated only in c-Fos immunoreactivity. In the rats exposed to chronic open-field stress the number of c-Fos-ir cells in the structures of the hippocampal formation studied was smaller than in rats exposed to acute stress and was comparable to that in the control group. No differences were observed between the groups exposed to acute and chronic stress in the number of TrkA-ir cells in the structures under investigation. The number of NGF-ir neurons in CA1 and CA2 was lower after exposure to chronic than after exposure to acute stress but was still higher than that in the control group. Our findings indicate that neurons of CA1-CA3 and the DG are engaged in the stress response after acute as well as chronic open-field exposure. This is probably related to the important role of the hippocampus in processing new spatial information as well as in the habituation processes, although these appear to have different mechanisms.
The amygdala is a critical component of the neuroanatomical stress circuit. It plays a role in the generation of responses to emotional stimuli. The central (CeA) and medial (MeA) amygdaloid nuclei are implicated in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor, TrkA, following acute and chronic open-field stress were studied in the CeA and MeA nuclei of the amygdala. The material consisted of 21 male adult rats divided into three groups: non-stressed (control) animals, rats exposed to acute (once only lasting 15 min) and chronic (15 min daily over 21 days) aversive stimulation (open-field exposure). The brains were stained with the use of immunohistochemical methods for c-Fos, NGF or TrkA. In the control rats c-Fos-, TrkA- and NGF-ir cells were observed in the nuclei studied, but the quantity varied, being moderate or high (immunoreactive to TrkA and NGF) or low (immunoreactive to c-Fos). In the animals exposed to acute open-field stress the number of c-Fos-ir, NGF-ir and TrkA-ir cells in the nuclei under examination was differentiated but higher than that in the control animals. In the animals exposed to chronic open-field stress the number of c-Fos-ir cells in the nuclei studied was similar and was smaller than those in animals exposed to acute stress. The number of TrkA-ir neurons was also lower in comparison to that in animals exposed to acute stress. However, no significant differences in the number of NGF-ir cells were observed between the groups exposed to acute and chronic stress. Diverse expression of c-Fos protein following both acute and chronic stress stimulation may prove the functional heterogeneity of the amygdaloid nuclei investigated. The decrease observed in both c-Fos- and TrkA-ir in MeA (only TrkA in CeA) of animals exposed to chronic stress may indicate the phenomenon of habituation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.