Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  net primary production
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr–1. NEP will increase to about 5 Mt C yr–1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang’s forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
Pattern of plant biomass and net primary production was investigated in two localities (Minqin and Linze) of oasis-desert ecotone (ODE) in Northwest China, in order to recognize the spatial and temporal variability of vegetation under same regional climate with different groundwater depth. The average depth to groundwater was over 14.02 m at Minqin -- marked further as DG (deep groundwater) and about 4.96 m at Linze -- marked further as SG (shallow groundwater). We have measured plant biomass and Netprimary productivity (NPP) across species, threetimes per year for three consecutive years, in sixplots along Minqin and Linze oasis-desert ecotone(further marked as DG and SG ODE), respectively.Our results showed that DG and SGODEs had different growth responses to differentgroundwater depths. DG ODE exhibited higherinter-annual variation in annual NPP (rangedfrom 0.18 to 9.30 g m⁻²) than did SG ODE (rangedfrom 0.42 to 17.99 g m⁻²). Decrease of groundwaterdepth had apparently altered the seasonalityof productivity in DG ODE systems, where precipitationin summer maintained plant growth,while ODE with high groundwater depth tendedto have higher spring NPP in SG ODE. Spatialand temporal heterogeneity of NPP at the scaleof our measurements was significantly greater inDG ODE than in SG ODE. SG ODE tended tosupport higher NPP than did DG ODE. In addition,the groundwater depth strongly influenced spatial and temporal heterogeneity of NPP in thedesert ecosystems. Clearly, the desert ecosystemwith higher groundwater depth is more stable andmore resistant to long-term drought or climateshifts in arid regions. These investigations andquantitatively analysis are very significant for theexecution of conservation and restoration in aridecosystems.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.