Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  mitochondrial membrane
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Benzodiazepine binding sites were studied in mitochondria of unicellular eukaryotes,the amoeba Acathamoeba castellanii and the yeast Saccharomyces cerevisiae, and also in rat liver mitochondria as a control. For that purpose we applied Ro5-4864, a well-known ligand of the mitochondrial benzodiazepine receptor (MBR) present in mammalian mitochondria. The levels of specific [3H]Ro5-4864 binding, the dissociation constant (KD) and the number of [3H]Ro5-4864 binding sites (Bmax) determined for fractions of the studied mitochondria indicate the presence of specific [3H]Ro5-4864 binding sites in the outer membrane of yeast and amoeba mitochondria as well as in yeast mitoplasts. Thus, A. castellanii and S. cerevisiae mitochondria, like rat liver mitochondria, contain proteins able to bind specifically [3H]Ro5-4864. Labeling of amoeba, yeast and rat liver mitochondria with [3H]Ro5-4864 revealed proteins identified as the voltage dependent anion selective channel (VDAC) in the outer membrane and adenine nucleotide translocase (ANT) in the inner membrane. Therefore, the specific MBR ligand binding is not confined only to mammalian mitochondria and is more widespread within the eukaryotic world. However, it can not be excluded that MBR ligand binding sites are exploited efficiently only by higher multicellular eukaryotes. Nevertheless, the MBR ligand binding sites in mitochondria of lower eukaryotes can be applied as useful models in studies on mammalian MBR.
Zbadano typ hamowania dehydrogenazy bursztynianowej [E.C. 1.3.99.1] (SDH) przez fluorek w zmiennych warunkach doświadczenia. Badania prowadzono z preparatami cząstek submitochondrialnych, co pozwoliło śledzić zachowanie enzymu w naturalnym otoczeniu błony mitochondrialnej. Ustalono, że w zależności od warunków doświadczalnych - a więc Stężeniu fluorku i bursztynianiu w roztworze, jon fluorkowy może zachowywać się jak inhibitor kompetycyjny lub niekompetycyjny.
Mitochondrial homeostasis, resulting from fusion and fission processes together with mitophagy and mitogenesis, are widely studied nowadays. This is probably because we know more and more about the role of mitochondria in metabolic diseases (diabetes, hypertension), neurodegeneration (Parkinson’s Disease, Alzheimer’s Disease), but also in broad spectrum of inherited neurological syndromes (CharcotMarie-Tooth). In our studies we aimed to examine the expression pattern of particular mitochondrial proteins, mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), in mouse tissues. We aim to verify, whether potential differences in expression of those proteins can by implicated in pathomechanism of Charcot-Marie-Tooth type 2A neuromyopathy, related to mitofusion 2 gene mutations. Mitofusins are mitochondrial GTPases, implicated in fusion of outer mitochondrial membrane. In this process, mitofusins juxtapose two mitochondria by combining homo- and heterodimers at the surface of two outer mitochondrial membranes. Although there is 63% homology between mitofusins, it is proved, that they show some different functions. As Mfn1 KO present more severe aberrations in mitochondrial network formation than Mfn2 deficient cells, Mfn1 is considered to have stronger fusion activity. It is also suspected, that it is Mfn1 that links fusion of outer and inner mitochondrial membranes. Nevertheless, Mfn2, but not Mfn1, is present at endoplasmic reticulum (ER). Mfn2 tethers ER to mitochondria facilitating calcium flux and (indirectly) autophagy. Moreover, Mfn2 seems to have some regulatory effect on cell cycle, beyond its fusion activity and its lower expression seems to correlate with insulin resistance and hyper proliferation in hypertension. So, the question is, how much these two proteins can replace each other while playing so different roles? Moreover, it is suggested that CMT2A predominantly affects peripheral nerves because mutated, malfunctioned Mfn2 is insufficiently compensated by Mfn1 due to its low expression particularly in this type of tissue. To discuss this issue, we have investigated the expression of Mfn1 and Mfn2, as well as protein content, in tissues, performing Real Time PCR and Western Blot studies. Preliminary data from Western blot analysis displayed equally high relative level of both mitofusins in nervous system (dorsal root ganglia, cerebral cortex, cerebellum, spinal cord) in comparison to peripheral organs (muscle, heart, liver, kidney, skin). Moreover, Mfn1 expression seems significantly lower in dorsal root ganglia, which are well established model of peripheral nervous system. This phenomenon was not observed for other tissues, even from central nervous system. So it seems quite possible, that axonal damage of peripheral nerves in CMT2A, may be observed due to the poor compensation of dysfunctional Mfn2 by fully functional Mfn1, which is not expressed at sufficient level. The project was supported by NSC grant NN402474640
Channels selective for potassium or chloride ions are present in inner mitochondrial membranes. They probably play an important role in mitochondrial events such as the formation of pH and regulation of mitochondrial volume changes. Mitochondrial potassium and chloride channels could also be the targets for pharmacologically active compounds such as potassium channel openers and antidiabetic sulfonylureas. This review describes the properties, pharmacology, and current observations concerning the functional role of mitochondrial potassium and chloride channels.
Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.
Silver nanoparticles (NAg) possess antibacterial properties thus are widely used in many applications in medicine, life sciences and biotechnology. Nanoparticles can be found in vertebrate brain, but little is known about their neurotoxicity. The aim of this study was to investigate how NAg can contribute to neuronal cell death. In the study primary cultures of rat cerebellar granule cells (CGC) were used. We tested hypothesis concerning the role of glutamatergic NMDA receptors in NAg-evoked neurotoxicity. In our study changes in intracellular calcium (Ca2+) homeostasis, uptake of 45Ca2+, reactive oxygen species (ROS) production, mitochondrial membrane potential and cells viability were investigated. We used commercially available 0.2% polyvinylpyrrolidone (PVP)-coated NAg <100 nm. To avoid sedimentation and agglomeration, before application to the CGC culture, NAg were sonicated with fetal calf serum. NAg were applied in concentration 2.5–75 µg/ml for 10, 30 min or 24 h, depending on experiment. As a pharmacological tool 0.5 µM MK801, a noncompetitive inhibitor of NMDA receptor, was used. After 10 min incubation in the presence of 25–75 µg/ ml NAg dose dependent increase of 45Ca2+ concentration was observed in neurons. This increase was comparable to that evoked by 100 µM glutamate and was completely abolished by MK801. Using fluorescent intracellular calcium indicator fluo3 we observed increase in intracellular calcium level by 200% compared to control, which was partially diminished by MK801. ROS production was measured using fluorescent dye DCF. After 30 min incubation with 75 µg/ml NAg the increase by about 35% over control level was observed and application of MK801 reduced it significantly. Changes in mitochondrial membrane potential were determined using rhodamine (R123). We observed significant decrease in mitochondrial potential during 30 min incubation with different concentrations of NAg and also in this case administration of MK801 was protective. Cells viability was assessed after 24 h incubation with NAg µg/ml alone or together with MK801. Application of MK801 increased neuronal survival from 50% up to 80%. Our results show that excitotoxicity via activation of NMDA receptor, followed by calcium imbalance, destabilization of mitochondrial function and ROS production, seems to be important mechanism involved in neurotoxicity evoked by NAg in cultured neurons. Supported by grant NN401619938.
Retinal lipids of crayfish, kept at 4°C under continuous darkness for 3 weeks, consisted mainly of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); sphingomyelin (SM), phosphatidylinositol (PI) and phosphatidylserine (PS) were minor contributors. PI, involved in the phototransduction cascade, never reached greater concentrations than 7% of the total. High concentrations of polyunsaturated fatty acids (PUFA) such as 20:4n-6, 20:5n-3 and 22:6n-3 (DHA, docosahexaenoic acid) were present in PC, PE and PS, but scarce in SM and PL In retinae of crayfish kept at 4°C in darkness for 3 weeks and then exposed to white light (6 h; ca. 4,500 lx), SM and PS remained seemingly unaffected. PC, however, significantly decreased within 10 min to 65% of the initial value and 50% at 180 min. To study the reduction of PC, lipids of retinae suspended in physiological solution with/without phospholipase C (PLC) and phospholipase A2 (PLA2) inhibitors such as DMDA (=DEDA), manoalide, ET-I8-OCH3, and U-73122 were measured. Only free fatty acids (FFA) of retinae with inhibitors of PLA2 like DMDA and manoalide decreased. Retinae irradiated by white light for 3 h displayed a significant reduction of PC, compared with those that had remained in continuous darkness. However, the PC of retinae with PLA2-inhibitors was not decreased by light. Our results provide evidence that not only photoreceptor cell PLC, but also PLA2 is activated by light.
The supply of substrates to the respiratory chain as well as of other metabolites (e.g. ATP) into inner compartments of mitochondria is crucial to preprotein import into these organelles. Transport of the compounds across the outer mitochondrial mem­brane is enabled by mitochondrial porin, also known as the voltage-dependent an- ion-selective channel (VDAC). Our previous studies led to the conclusion that the transport of metabolites through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria missing VDAC (now termed YVD AC 1) is considerably re­stricted. Therefore we expected that depletion of YVDAC1 should also hamper pro­tein import into the mutant mitochondria. We report here that YVD AC 1-depleted mi­tochondria are able to import a fusion protein termed pSu9-DHFR in the amount com­parable to that of wild type mitochondria, although over a considerably longer time. The rate of import of the fusion protein into YVD AC 1-depleted mitochondria is dis-tinctly lower than into wild type mitochondria probably due to restricted ATP access to the intermembrane space and is additionally influenced by the way the supporting respiratory substrates are transported through the outer membrane. In the presence of ethanol, diffusing freely through lipid membranes, YVDAC1-depleted mitochon- dria are able to import the fusion protein at a higher rate than in the presence of external NADH which is, like ATP, transported through the outer membrane by facilitated diffusion. It has been shown that transport of external NADH across the outer membrane of YVDAC1-depleted mitochondria is supported by the protein import machin- ery, i.e. the TOM complex (Kmita & Budziñska, 2000, Biochim. Biophys. Acta 1509, 86.94.). Since theTOMcomplex might also contribute to the permeability of themem-brane to ATP, it seems possible that external NADH and ATP as well as the imported preprotein could compete with one another for the passage through the outer mem- brane in YVDAC1-depleted mitochondria.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.