Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  metoda GPS
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Celem niniejszej pracy jest opisanie źródeł błędów mających lub mogących mieć wpływ na jakość wyznaczenia współrzędnych szczegółów sytuacyjnych podczas ich pomiaru metodą GPS RTK z punktu widzenia użytkownika. Źródła błędów podczas pomiaru szczegółów sytuacyjnych można podzielić na dwie grupy. Pierwsze to te, na które jako użytkownik systemu nie mamy wpływu. Do tej grupy można zaliczyć m.in. błędy wynikające z samej dokładności działania GPS, a także te związane z zastosowaniem metody pomiaru, np. RTK. Do drugiej grupy błędów można zaliczyć te, które powstają podczas właściwego pomiaru takie jak: nieprostopadłość tyczki, niecentryczne jej ustawienie nad mierzonym szczegółem, zły dobór punktów wpasowania na istniejącą osnowę itp. W pracy omówiono szczegółowo przyczyny powstawania błędów należących do obu grup, oceniono ich wpływ na ostateczną wartość współrzędnych oraz opisano możliwości ich ograniczenia lub eliminacji.
W pracy przedstawiono zagadnienie niwelacji satelitarnej realizowanej dla obiektów liniowych z wykorzystaniem sieciowych pomiarów kinematycznych w czasie rzeczywistym RTN (Real Time Networks) nawiązanych do systemu ASG-EUPOS. Teoretyczne aspekty ujmujące możliwość praktycznego wykorzystania niwelacji satelitarnej oparto na wynikach pomiaru testowego trzech odcinków linii kolejowej o łącznej długości ponad 8 km. Do wyznaczania wysokości normalnych wykorzystano model quasi-geoidy „Geoida Niwelacyjna 2001" oraz uproszczoną interpolację liniową. W przypadku niwelacji satelitarnej RTN metoda obliczania wysokości normalnych ma znaczenie drugorzędne. Najistotniejszym czynnikiem jest zbyt mała dokładność wyznaczania wysokości elipsoidalnych z pomiarów RTN oraz ich losowy charakter o rozrzucie na poziomie 9 cm.
Wykorzystanie nowoczesnej techniki pomiarowej, jaką jest metoda satelitarna GPS, do wyznaczenia współrzędnych punktów osnów geodezyjnych, wymaga niejednokrotnie połączenia jej rezultatów z wynikami pomiarów klasycznych. W niniejszej pracy na przykładzie obiektu - osnowy II klasy miasta Biskupiec - pokazano niektóre aspekty związane z łączeniem różnorodnych pomiarów przy jednoczesnym wyrówna­niu całej sieci. Opisano przebieg pomiaru i wyrównania oraz pokazano dokładności, jakie należy osiągnąć, wykonując pomiary klasyczne, aby można było wykorzystać je równorzędnie z pomiarami satelitarnymi GPS.
W niniejszym opracowaniu zaprezentowano wyniki analiz przeprowadzo­nych w celu określenia wzajemnych relacji pomiędzy wysokością terenu pozyskaną różny­mi metodami. Opierając się na wcześniejszych badaniach, porównano wysokości punktów pomierzone bezpośrednio techniką GPS w trybie RTK, uzyskane ze zdjęć kamerą cyfrową ADS40, chmurę punktów otrzymaną z nalotu ALS (Airborne Laser Scanner) oraz model GRID utworzony z danych ALS. Surowe dane ALS opracowano wstępnie w programie TerraScan. Wykorzystując algorytm aktywnego modelu TIN, przeprowadzono automatycz­ną klasyfikację, wydzielając punkty należące do pokrycia terenu od punktów leżących na powierzchni terenu. Na zbiorze punktów terenowych przeprowadzono triangulację w pro­mieniu 20 m od punktów kontrolnych GPS. Dzięki temu można było obliczyć płaszczyzny trójkątów, w obszarze których zawarte były punkty GPS. Następnie dla współrzędnych (x, y) punktów GPS obliczono wysokości z danych ALS. W analogiczny sposób dla za­danych współrzędnych (x, y) odczytano wysokości ze zdjęć lotniczych. NMT w postaci GRID powstał również przy użyciu nakładki TerraScan z zadaną wielkością oczka siatki równą 1 m. Najniżej ze wszystkich zbiorów położone są punkty GPS, średnio o ponad 0.2 m poniżej danych ALS. Jak można było przypuszczać, chmura punktów ALS oraz model GRID leżą najbliżej siebie, przy czym model znajduje się średnio 0.1 m powyżej surowych danych ALS.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.