Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  mesenchymal cell
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Chondrocytes differentiate from mesenchymal progenitors and produce templates (anlagen) for the developing bones. Chondrocyte differentiation is controlled by Sox transcription factors. Templates for the neighbour bones are subsequently separated by conversion of differentiated chondrocytes into non-chondrogenic cells and emergence of interzone in which joints cavitation occurs. A central role in initiating synovial joint formation plays Wnt-14/beta-catenin signalling pathway. Moreover, bone morphogenetic proteins and growth and differentiation factors are expressed at the site of joint formation. Joint cavitation is associated with increased hyaluronic acid synthesis. Hyaluronic acid facilitates tissue separation and creation of a functional joint cavity. According to the traditional view articular cartilage represents part of cartilage anlage that is not replaced by bone through endochondral ossification. Recent studies indicate, however, that peri-joint mesenchymal cells take part in interzone formation and that these interzone cells subsequently differentiate into articular chondrocytes and synovial cells. Thus, anlage chondrocytes have a transient character and disappear after cessation of growth plate function while articular chondrocytes have stable and permanent phenotype and function throughout life. (Folia Morphol 2013; 72, 3: 181–187)
Even though selective tooth agenesis is the most common developmental anomaly of human dentition, its genetic background still remains poorly understood. To date, familial as well as sporadic forms of both hypodontia and oligodontia have been associated with mutations or polymorphisms of MSX1, PAX9, AXIN2 and TGFα, whose protein products play a crucial role in odontogenesis. In the present report we described a novel mutation of MSX1, which might be responsible for the lack of 14 permanent teeth in our proband. However, this С.581C>Т transition, localized in a highly conserved homeobox sequence of MSX1, was identified also in 2 healthy individuals from the proband’s family. Our finding suggests that this transition might be the first described mutation of MSX1 that might be responsible for oligodontia and showing incomplete penetrance. It may also support the view that this common anomaly of human dentition might be an oligogenic trait caused by simultaneous mutations of different genes.
The goal of regenerative medicine is to ameliorate irreversible destruction of brain tissue by harnessing the power of stem cells in the process of neurogenesis. Several types of stem cells, including mesenchymal stem cells, hematopoietic stem cells, as well as neural cells differentiated from embryonic stem cell lines, have been proposed as potential therapeutic vehicles. In this review paper we will discuss a perspective of stem cell therapies for neurological disorders with special emphasis on potential application of cells isolated from adult tissues. In support of this our group found that murine bone marrow contains a mobile population of Oct-4+CXCR4+SSEA-1+Sca-1+lin–CD45– very small embryonic-like stem cells (VSELs) that are mobilized into peripheral blood in a murine stroke model. The number of these cells in circulation increases also after pharmacological mobilization by administration of granulocyte colony stimulating factor (G-CSF). Recently we found that VSELs are present in various non-hematopoietic adult organs and, interestingly, our data indicate that the brain contains a high number of cells that display the VSEL phenotype. Based on our published data both in human and mice we postulate that VSELs are a mobile population of epiblast/germ line-derived stem cells and play an important role as an organ-residing reserve population of pluripotent stem cells that give rise to stem cells committed to particular organs and tissues - including neural tissue. In conclusion human VSELs could be potentially harnessed in regenerative medicine as a source of stem cells for neurogenesis.
Cell therapy is a promising strategy for the treatment of neurological diseases. Positive therapeutic effects have been obtained in animal models, and, recently, in a few clinical trials; however, the efficacy is still limited. Rather than intracerebral transplantation, body fluids, such as blood or CSF, are increasingly being used as a route of stem cell delivery to achieve a wider distribution of cells and to make the procedure less invasive. For circulating fluid-mediated cell transplantation, the improvement of cell homing to lesion sites is critical in advancing stem cell therapy. The optimization of cell delivery and targeting can be greatly accelerated with the use of non-invasive cellular imaging. Because of the high signal of iron oxide nanoparticles (SPIO) and the translational potential, MRI is the leading technology for in vivo cellular imaging. While MRI, because of its high spatial resolution, is unprecedented for the depiction of the location of transplanted cells, it does not provide information about cell viability. But, this can be complemented with reporter gene-based bioluminescent imaging (BLI) to image cell survival. MR imaging of SPIO-labeled human stem cells enables visualization of cell trafficking following intracarotid delivery. Transplantation of large, mesenchymal stem cells in a rat model of stroke resulted in early entrapment of cells in the ipsilateral hemisphere. The distribution of cells was dependent on the time from stroke induction to cell transplantation (1, 2, 3, and 7 days) and could be related to the evolution of blood supply to distinct compartments of this hemisphere over the first week after stroke. A massive outflow of cells from the brain was observed within the first day after transplantation. The transplantation of small, human glial restricted progenitors (GRPs) cells affected rat brain homing only if these cells were engineered to express VLA-4 integrin (VLA-4+), and the endothelium was activated by LPS to express VCAM-1, a receptor for VLA-4. The transplantation of VLA+ GRPs in a rat model of stroke affected the selective inflow of cells to the lesion and the persistence of the iron oxide signal for over a month. However, BLI revealed a gradual decrease of cell viability, with a loss of bioluminescence within one week after transplantation. The signal disappearance was thought to be the result of the rejection of human cells in non-immunosuppressed animals. The monitoring of cell fate post transplantation into the cerebral ventricles is also crucial, since the circulation of the CSF may affect the homing of transplanted cells. MR imaging of the intracerebroventricular (ICV) delivery of SPIO-labeled cells in a pediatric patient showed the feasibility of the procedure, with no adverse events and successful detection of SPIO-labeled cells. In this patient, in particular, cells transplanted to the frontal horn of the lateral ventricle were found in the occipital horn. Considering the patient position during surgery, such cell distribution could have resulted from cell sedimentation. The location of the cells was stable on follow-up MRIs, but a gradual disappearance of the SPIO signal was observed. ICV delivery in large animals (pig) revealed a more dispersed distribution of cells, which may be attributable to slit ventricles.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.