Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  membrane phospholipid
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The styryl dye FM1-43 becomes highly fluorescent upon binding to cell membranes. The breakdown of membrane phospholipid asymmetry in ionophore-stimulated T-lymphocytes further increases this fluorescence [Zweifach, 2000]. In this study, the capacity of FM1-43 to monitor membrane phospholipid scrambling was explored using flow cytometry in human erythrocytes and human erythrocyte progenitor K562 cells. The Ca2+-dependent phosphatidylserine-specific probe annexin V-FITC was used for comparison. The presented data show that the loss of phospholipid asymmetry that could be induced in human erythrocytes by elevated intracellular Ca2+ or by structurally different membrane intercalated amphiphilic compounds increases the FM1-43 fluorescence two- to fivefold. The profile of FM1-43 fluorescence for various treatments resembles that of phosphatidylserine exposure reported by annexin V-FITC. FM1-43 detected the onset of scrambling more efficiently than annexin V-FITC. The amphiphile-induced scrambling was shown to be a Ca2+-independent process. Monitoring of scrambling in K562 cells caused by NEM-induced Ca2+-release from intracellular stores and by Ca2+ and ionophore A23187 treatment showed that the increase in FM1-43 fluorescence correlated well with the number of annexin V-FITC-detected phosphatidylserine-positive cells. The results presented here show the usefulness of FM1-43 as a Ca2+-independent marker of dissipation in asymmetric membrane phospholipid distribution induced by various stimuli in both nucleated and non-nucleated cells.
Platelet activating factor, PAF, (l-0-alkyl-2-acetyl-sn-glycero3-phosphorylcholine) is a naturally occurring compound of membrane phospholipid. The aim of this article was to briefly review current research on the significant role of PAF in mammalian reproductive functions. The involvement of this phospholipid in the female reproductive processes may indicate that it plays an important role in ovarian follicular development, reproductive cycle and pregnancy. A full understanding of PAF functions in sperm motility, capacitation and the acrosome reaction is mandatory to correctly interpret its role in the male reproductive processes. This review also addressed the importance of the mechanism regulating PAF metabolism, PAF-acetylhydrolase (PAF-AH), during the membrane fusion events associated with fertilization.
 Annexins belong to a family of multi-functional membrane- and Ca2+-binding proteins. The characteristic feature of these proteins is that they can bind membrane phospholipids in a reversible, Ca2+-dependent manner. While animal annexins have been known for a long time and are fairly well characterized, their plant counterparts were discovered only in 1989, in tomato, and have not been thoroughly studied yet. In the present review, we discuss the available information about plant annexins with special emphasis on biochemical and functional properties of some of them. In addition, we propose a link between annexins and symbiosis and Nod factor signal transduction in the legume plant, Medicago truncatula. A specific calcium response, calcium spiking, is an essential component of the Nod factor signal transduction pathway in legume plants. The potential role of annexins in the generation and propagation of this calcium signal is considered in this review. M. truncatula annexin 1 (MtAnn1) is a typical member of the plant annexin family, structurally similar to other members of the family. Expression of the MtAnn1 gene is specifically induced during symbiotic associations with both Sinorhizobium meliloti and the mycorrhizal fungus Glomus intraradices. Furthermore, it has been reported that the MtAnn1 protein is preferentially localized at the nuclear periphery of rhizobial-activated cortical cells, suggesting a possible role of this annexin in the calcium response signal elicited by symbiotic signals from rhizobia and mycorrhizal fungi.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.