Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  lignocellulose
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Coculture of xylose-fermenting yeast P. stipitis CCY 39501 and respiratory deficient mutant of S. cerevisiae V30 designated as V30 I 40 was used for ethanol fermentation on a medium containing glucose and xylose mixture and compared to P. stipitis monoculture or coculture of P. stipitis and S. cerevisiae V30. Batch fermentations were carried out on a model medium or on a medium containing both sugars derived from direct saccharification of either wheat straw or birch sawdust. The yields obtained were 0.38 g/g, 0.34 g/g and 0.4 g/g for model medium, wheat straw and birch sawdust hydrolysates respectively, after cofermentation of P. stipitis with RD mutant V30 I 40. The results confirmed the application of this coculture for ethanol fermentation of sugars derived from lignocellulosic hydrolysates.
Celem pracy jest przegląd metod obróbki wstępnej, które są innowacyjnymi technologiami w procesie optymalizacji produkcji biogazu. Obecnie zapotrzebowanie na energie odnawialne i paliwa kopalniane wciąż wzrasta. Biogaz posiada wiele zalet w przeciwieństwie do innych biopaliw. Odpadowa biomasa lignocelulozowa jest atrakcyjnym substratem do produkcji biogazu z uwagi na jej niską cenę, ilość i całoroczną stałą dostępność. Produkcja energii bazująca na odpadach roślinnych, których głównym komponentem jest celuloza i lignina, posiada zerową emisję gazów cieplarnianych. Ten typ biomasy nie jest w pełni biodegradowalny w procesie fermentacji metanowej w skali przemysłowej z uwagi na jej strukturę fizyko-chemiczną, co skutkuje niższym uzyskiem energii. Biodegradowalność odpadów lignocelulozowych można skutecznie polepszyć poprzez stosowanie obróbki wstępnej biomasy. Ostatnie wyniki badań pokazały, że obróbka taka może poprawić efektywność produkcji biogazu do ponad 90% surowców takich jak drewno, trawy i kukurydza.
W pracy oceniano możliwości zagospodarowania słomy pszennej oraz łętów ziemniaczanych do produkcji etanolu. Najlepsze efekty uzyskiwano po zastosowaniu skojarzonego oddziaływania preparatów ACCELLERASE®1500 i ACCELLERASE®XC lub ACCELLERASE®1500 i ACCELLERASE®BG. Lepszym surowcem spośród badanych okazały się łęty ziemniaczane. Wydajności etanolu uzyskiwane po fermentacji osadów po prehydrolizie łętów ziemniaczanych oscylowały w granicach od 63,33 do 73,87 dm3 z 1 tony s.m. surowca.
Przeprowadzono badania, których celem było określenie wpływu alkalicznej obróbki wstępnej słomy rzepakowej na skuteczność hydrolizy enzymatycznej polisacharydów. Doświadczenia zaplanowano przy wykorzystaniu programu Statistica – plan Box-Behnkena. Wielkości wejściowe stanowiły następujące zmienne: temperatura obróbki 60–80ºC, czas 2–8 h, dodatek alkaliów (NaOH lub Ca(OH)2) w proporcji: 0,05–0,2 g ⋅ g-1 s.s. substratu. Wielkość wyjściową, na podstawie której określano efektywność obróbki badanego substratu, stanowiło stężenie cukrów redukujących uwalnianych podczas sekwencyjnie prowadzonej 48-godzinnej hydrolizy enzymatycznej. Optymalizacja przeprowadzona na podstawie wartości wyjściowych wskazała następujące parametry obróbki wstępnej: stężenie NaOH – 0,15 g ⋅ g-1 s.s. materiału, temperatura – 72ºC, czas – 6,6 h oraz stężenie Ca(OH)2 –0,141 g ⋅ g-1 s.s. materiału, temperatura – 74ºC, czas – 3,2 h, których zastosowanie pozwoliło na uzyskanie stężenia cukrów w hydrolizatach odpowiednio: 30,4 oraz 27,7 g ⋅ dm-3.
Przedmiotem badań było określenie wpływu obróbki wstępnej miskanta ol­brzymiego i słomy rzepakowej za pomocą 15-procentowego roztworu amoniaku na proces hydrolizy zawartych w nich polisacharydów. Efektywność jej działania oceniono na pod­stawie stężenia cukrów redukujących uwolnionych podczas hydrolizy enzymatycznej oraz jej wydajności obliczonej w odniesieniu do sumy polisacharydów dostępnych w materia­łach. Przeprowadzenie obróbki wstępnej w warunkach 80°C/6 godz. skutkowało wzrostem stężenia uwalnianych cukrów o 50% (miskant) i 18% (słoma rzepakowa) w odniesieniu do hydrolizy materiałów po obróbce w warunkach 20°C/24 godz., w tym samym czasie hydrolizy. Niezależnie od wariantu obróbki wyższy stopień delignifikacji odnotowano w mi- skancie niż w słomie rzepakowej.
W publikacji dokonano analizy obecnych i przyszłych trendów w zakresie produkcji i wykorzystania biopaliw transportowych z ukierunkowaniem na produkcję biopaliw drugiej generacji powstających z surowców nieżywnościowych. Pokazano możliwość ograniczenia zapotrzebowania na grunty orne w Polsce przeznaczane pod surowce do produkcji biopaliw wyższej generacji, poprzez wykorzystanie nowych technologii, bazujących na odpadach z produkcji rolnej (np. słoma) czy uprawach specjalnych (rośliny lignocelulozowe).
Obróbka wstępna surowców wykorzystywanych, jako substrat w instalacjach biogazowni rolniczych jest niezbędnym zabiegiem pozwalającym na szybszy i sprawniejszy przebieg procesu fermentacji metanowej. Celem pracy było określenie wpływu mechanicznej obróbki wstępnej na ilość i jakość biogazu w procesie fermentacji metanowej. Materiał do badań stanowiły trawy energetyczne: miskant olbrzymi i mozga trzcinowata o dwóch zróżnicowanych przedziałach długości sieczki: 0,5-3 mm, 4-8 mm. Pomyślny przebieg eksperymentu wskazuje, że mechaniczne rozdrobnienie ma istotny wpływ na proces fermentacji metanowej.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.