Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  leaf greenness
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Copper is essential for the growth and development of plants. This micronutrient affects chlorophyll content, photosynthesis process and water relations in the plant. The objective of this study was to determine the effect of copper deficiency in soil on the rate of photosynthesis and transpiration, water use efficiency, leaf greenness and the yield of selected cultivars of perennial ryegrass (Lolium perenne L.) and orchard grass (Dactylis glomerata L.). During the growing season, the rate of photosynthesis and transpiration was measured using a LI-COR 6400 gas analyzer (Portable Photosynthesis System), and leaf greenness was estimated with a Minolta SPAD-502 chlorophyll meter. Water use efficiency (WUE) was calculated based on instantaneous values of photosynthesis and transpiration. Dry matter yield was determined by green matter drying to constant weight at 105oC. The results of the study indicate that copper deficiency significantly decreased the rate of photosynthesis and transpiration, chlorophyll concentration in leaves and the yield of all investigated cultivars. Perennial ryegrass cv. Maja was found to be most resistant to copper deficiency – it was characterized by a high rate of photosynthesis and transpiration, and by the highest chlorophyll content. The yield of cv. Maja attained under copper deficit conditions was comparable to that of other cultivars grown under control conditions.
The objective of this study was to determine the effect of manganese deficiency in soil on the rate of photosynthesis and transpiration, water use efficiency, leaf greenness and the yield of selected cultivars of perennial ryegrass (Lolium perenne L.) and orchard grass (Dactylis glomerata L.). During the growing season, the rate of photosynthesis and transpiration was measured using a LI-COR 6400 gas analyzer (Portable Photosynthesis System), and leaf greenness was estimated with a Minolta SPAD-502 chlorophyll meter. Water use efficiency (WUE) was calculated based on instantaneous values of photosynthesis and transpiration. Dry matter yield was determined by green matter drying to constant weight at 105oC. The results of the study indicate that the response of grasses to manganese deficiency in soil was dependent on plant species and cultivar. In the present experiment perennial ryegrass cultivars showed a stronger response to manganese deficit than orchard grass cultivars. Their response involved a decrease in the rate of photosynthesis and transpiration, and in the chlorophyll content of leaves. Among the tested cultivars, perennial ryegrass cv. Maja was found to be most sensitive to manganese deficiency in soil, as confirmed by the highest decrease in the values of all examined parameters.
Phosphorus is essential for the growth and development of plants. It also determines the quantity and quality of plant yields. Phosphorus actively participates in many vital processes and forms part of numerous substances indispensable for a normal course of certain biochemical changes. Unfortunately, phosphorus deficiency is quite common in grasslands. As a result, the content of phosphorus in soil is insufficient to meet nutritional requirements of forage crops and, consequently, the concentration of this element in green forage is insufficient to meet nutritional requirements of ruminants. The aim of the present study was to determine the effect of phosphorus deficiency in soil on the rate of photosynthesis and transpiration, water use efficiency, leaf greenness and the yield of some cultivars of perennial ryegrass (Lolium perenne L.) and orchard grass (Dactylis glomerata L.). A greenhouse experiment was conducted to assess the rate of photosynthesis and transpiration, water use efficiency (WUE), leaf greenness (SPAD - Soil-Plant Analysis Development) and the yield of perennial ryegrass (Lolium perenne L.) and orchard grass (Dactylis glomerata L.) grown under conditions of phosphorus deficiency in soil. The rate of photosynthesis and transpiration was measured using a LiCor 6400 gas analyzer (Portable Photosynthesis System), and leaf greenness was estimated with a Minolta SPAD-502 chlorophyll meter. Dry matter yield was determined by drying green matter to constant weight at 105 st.C. The results of the study indicate that phosphorus deficiency significantly decreased the rate of photosynthesis, water use efficiency and the yield of perennial ryegrass and orchard grass. At the same time, it increased the rate of transpiration and leaf greenness values. Among the tested cultivars, orchard grass cv. Areda was found to be the most resistant to phosphorus deficiency in soil, which was confirmed by the slightest reduction in the examined parameters.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.