Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  katelicydyna
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Hundreds of antimicrobial peptides (AMP) have been described in vertebrates, invertebrates, plants and even fungi. The present article describes the cathelicidins and defensins of pigs. Antimicrobial peptides possess direct antimicrobial activity against a wild spectrum of microorganisms (bacteria, fungi, viruses ect.) and the ability to modulate immunological response. The activity of AMP consists mainly in disrupting the microbial membrane. Defensins and cathelicidins are two main classes of AMP. To date, several AMP have been isolated from porcine tissues. The presence of AMP was confirmed in the bone marrow, tongue, trachea, kidneys, reproductive tract, urinary tract and small intestine. Porcine cathelicidins are the first cathelicidins isolated from mammals. So far, eleven porcine cathelicidins have been described: PR-39 (proline-rich 39-amino-acid peptide), PF-1 (proline-phenylalanine-rich prophenin-1), PF-2, cysteine-rich proteins called protegrins (PG) (from PG-1 to PG-5), three porcine myeloid antimicrobial peptides PMAP-23, PMAP-36 and PMAP-37. As yet, no á-defensins have been found in pigs; however, thirteen isoforms of porcine â-defensins (pBD) have been identified, including pBD-1, -2, -3, -4, -104, -108, -114, -123, -125, -126, -129 and pEP2C and pEP2E. In recent years, when the increasing bacterial resistance to antimicrobial agents has been observed, the studies of AMP are necessary, especially with respect to their role as an alternative to antibiotics.
Antimicrobial peptides (AMPs), also called peptide antibiotics, have been discovered in the early 1980s in frogs They were antimicrobial substances called magainins. AMPs are among the oldest defense mechanisms in plants, humans and animals. The major peptides include i.a. defensins, cathelicidins and protegrins. The mechanisms of action of antimicrobial peptides rely on the permeabilization of the microbial membrane, destabilization of the lipid bilayer structure, creation of micelles or channels within the membrane, binding lipopolysaccharide (LPS), preventing DNA replication, inhibiting protein expression, releasing ATP, as well as binding free iron and removing it from the microbial growth environment. At present, intensive research is being conducted on the use of AMPs in human and veterinary medicine, including treatment of infections such as acne, skin infections, sepsis, and bacterial infections of the diabetic foot. Among others, the following preparations are being tested: Ambicin, for the treatment of infections caused by Mycobacterium, and Iseganan, protegrin for the treatment of mouth inflammation, CF and chronic lung infections. P. aeruginosa-infected animals treated with the D2A21 preparation showed 100% survival. Some of the AMPs show biocidal activity against Bacillus anthracis. Defensins isolated from the mucus and tissues of many fish species have the ability to protect fish from infections by Aeromonas hydrophila, Pseudomonas fluorescens, and Vibrio anguillarum. Beneficial effects of using defensins in the treatment of Borrelia burgdorferi infections in dogs have been described. Synthetic peptides are used for the production of a vaccine against parvovirosis. Peptides obtained from lactic acid bacteria (LAB) reduce the contamination and increase the stability of food products. AMPs are also useful for decontaminating the environment and medical equipment, as well as for sterilizing catheters. They have also been used to develop biocidal self-disinfecting surfaces (BSOs). Moreover, AMPs can be used in hospital hygiene and veterinary medicine, e.g., for the treatment of protective clothing, wipes, filters, ventilation, etc.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.