Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  in situ hybridization
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The SUMO-conjugating enzyme Ubc9 is an essential enzyme in the SUMO (small ubiquitin-related modifier) protein modification system. Although sumoylation, covalent modification of cellular proteins by SUMO, is considered to regulate various cellular processes, and many substrates for sumoylation have been identified recently, the regulation of Ubc9 expression has not been examined in detail. We analyzed the expression of Ubc9 during rat brain development at the mRNA and protein levels. Northern and Western blot analyses revealed that expression of Ubc9 and SUMO-1 was developmentally regulated, while that of the ubiquitin-conjugating enzyme UbcH7 did not change so dramatically. In situ hybridization analysis revealed that the expression of Ubc9 was high in neuronal stem cells and moderate in differentiated neurons at embryonic stages. In the adult brain, moderate expression was observed in subsets of neurons, such as the dentate granular neurons and pyramidal neurons in the hippocampal formation and the large pyramidal neurons in the cerebral cortex. These results suggest that the Ubc9-SUMO system might participate in the proliferation and differentiation of neuronal cells in the developing brain and in neuronal plasticity in the adult brain.
Chaetognaths constitute a small marine phylum of approximately 120 species. Two classes of both 18S and 28S rRNA gene sequences have been evidenced in this phylum, even though significant intraindividual variation in the sequences of rRNA genes is unusual in animal genomes. These observations led to the hypothesis that this unusual genetic characteristic could play one or more physiological role(s). Using in situ hybridization on the frontal sections of the chaetognath Spadella cephaloptera, we found that the 18S Class I genes are expressed in the whole body, with a strong expression throughout the gut epithelium, whereas the expression of the 18S Class II genes is restricted to the oocytes. Our results could suggest that the paralog products of the 18S Class I genes are probably the “housekeeping” 18S rRNAs, whereas those of class II would only be essential in specific tissues. These results provide support for the idea that each type of 18S paralog is important for specific cellular functions and is under the control of selective factors.
Belonging to Class II of transposable elements, En/Spm transposons are widespread in a variety of distantly related plant species. Here, we report on the sequence conservation of the transposase region from sequence analyses of En/Spm-like transposons from Poaceae species, namely Zingeria biebersteiniana, Zingeria trichopoda, Triticum monococcum, Triticum urartu, Hordeum spontaneum, and Aegilops speltoides. The transposase region of En/Spm-like transposons was cloned, sequenced, and compared with equivalent regions of Oryza and Arabidopsis from the gene bank database. Southern blot analysis indicated that the En/Spm transposon was present in low (Hordeum spontaneum, Triticum monococcum, Triticum urartu) through medium (Zingeria bieberstiana, Zingeria trichopoda) to relatively high (Aegilops speltoides) copy numbers in Poaceae species. A cytogenetic analysis of the chromosomal distribution of En/Spm transposons revealed the concurence of the chromosomal localization of the En/Spm clusters with mobile clusters of rDNA. An analysis of En/Spm-like transposase amino acid sequences was carried out to investigate sequence divergence between 5 genera — Triticum, Aegilops, Zingeria, Oryza and Arabidopsis. A distance matrix was generated; apparently, En/Spm-like transposase sequences shared the highest sequence homology intra-generically and, as expected, these sequences were significantly diverged from those of O. sativa and A. thaliana. A sequence comparison of En/Spm-like transposase coding regions defined that the intra-genomic complex of En/Spm-like transposons could be viewed as relatively independent, vertically transmitted, and permanently active systems inside higher plant genomes. The sequence data from this article was deposited in the EMBL/GenBank Data Libraries under the accession nos. AY707995-AY707996-AY707997-AY707998-AY707999-AY708000-AY708001-AY708002-AY708003-AY708004-AY708005-AY708005-AY265312.
The aim of the present study was to investigate transcript localization of the oxytocin receptor (OTR) gene in different cells of the porcine uterus during luteolysis and early pregnancy (days 14-16) using in situ hybridization (ISH). OTR mRNA was localized in the uterine luminal epithelium (LEC), glandular epithelium (GEC), stromal cells (SC) of the endometrium, in the longitudinal muscle layer (LM) and circular muscle layer (CM) of the myometrium. The OTR transcript was quantified by optical density units of silver grains. The OTR transcript levels in the endometrium and myometrium were statistically higher during luteolysis than during early pregnancy (P < 0.05). Besides, during luteolysis, the mRNA level was higher in the LEC, GEC of the endometrium and LM of the myometrium compared to that observed in the SC of endometrium and CM of the myometrium, respectively (P < 0.05). In summary: 1) the level of OTR mRNA in uterine tissues is higher during luteolysis compared to early pregnancy, 2) the OTR transcript level in endometrial cells did not correspond to the sensitivity of these cells to oxytocin (ОТ), 3) the myometrial expression of the OTR gene is appropriate to control contractile activity and secretion of PG during luteolysis.
Using bioinformatics and experimental validation, we obtained a cDNA (named srsf) which was exclusively expressed in the mouse testes. RT-PCR analysis showed that srsf mRNA was not expressed in the gonad during the sex determination period or during embryogenesis. In developing mouse tests, srsf expression was first detected on post-natal day 10, reached its highest level on day 23, and then reduced to and remained at a moderate level throughout adulthood. In situ hybridization analysis demonstrated that srsf mRNA was expressed in pachytene spermatocytes and round spermatids in the testes. The predicted protein contains one RNA-binding domain (RBD) and a serine-arginine rich domain (RS), which are characterized by some splicing factors of SR family members. These findings indicate that srsf may play a role during spermatogenesis.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.