Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  imipramine
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The problem of drug-resistant depression indicates a strong need for alternative antidepressant therapies. In our earlier papers we described synergistic, antidepressant-like effects of a combination of imipramine (IMI) and amantadine (AMA) in the forced swimming test in rats, an animal model of depression. Moreover, preliminary clinical data showed that the above-mentioned combination had beneficial effects in treatment-resistant patients. In addition, a number of studies predicted a role of the brain-derived neurotrophic factor (BDNF) in the mechanism of action of antidepressant drugs (ADs). Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment with IMI (5 or 10 mg/kg) and AMA (10 mg/kg), given separately or jointly (twice daily for 14 day), on mRNA level (the Northern blot) in the hippocampus and cerebral cortex. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was dissected 24 h after the last dose of IMI and AMA. We also studied the effect of repeated treatment with IMI and AMA on the action of 5-HT1A- and 5-HT2A receptor agonists (8-OH-DPAT and (±)DOI, respectively) in behavioral tests. The obtained results showed that in the hippocampus IMI (10 mg/kg), and in the cerebral cortex IMI (5 and 10 mg/kg) and AMA (10 mg/kg) significantly elevated BDNF mRNA level. Joint administration of IMI (5 or 10 mg/kg) and AMA (10 mg/kg) induced a more potent increase BDNF gene expression in the hippocampus (but not in cerebral cortex) and either inhibited the behavioral syndrome induced by (±)DOI or did not change the action of 8-OH-DPAT (compared to treatment with either drug alone). The obtained results suggest that the enhancement of BDNF gene expression may be essential for the therapeutic effect of co-administration of IMI and AMA to drug-resistant depressed patients, and that among other mechanisms, 5-HT2A receptors possibly play some role in this effect.
Recent studies indicate a role of the brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, as well as in the mechanism of action of antidepressant drugs (ADs). It has been shown that serum BDNF levels are decreased in depressed patients. Moreover, antidepressant treatment increases serum BDNF levels and it is positively correlated with medication response. In addition, repeated administration of ADs induces an increase in rat hippocampal or cortical BDNF gene expression. Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment (twice daily for 14 days) of the new AD mirtazapine (5 or 10 mg/kg) on BDNF mRNA level (the Northern blot) in rat hippocampus and cerebral cortex. Imipramine was used as a reference compound. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was collected 24 h after the last doses of mirtazapine and imipramine. We also studied the effect of repeated mirtazapine on the action of the 5-HT2A receptor agonist (±)DOI in the behavioral test (head twitches induced by (±)DOI) in rats. The obtained results showed that, like imipramine (10 mg/kg), mirtazapine (10 mg/kg) increased BDNF gene expression in both the examined brain regions: in the hippocampus by 24.0 and 26.5%, in the cerebral cortex by 29.9 and 41.5%, respectively, compared with the vehicle-treated control. Neither mirtazapine nor imipramine administered repeatedly at a lower dose (5 mg/kg) significantly changed BDNF mRNA levels in the hippocampus and cerebral cortex. Repeated treatment with mirtazapine (10, but not 5 mg/kg) inhibited the behavioral syndrome induced by (±)DOI. This study provides first conclusive evidence that repeated mirtazapine administration increases BDNF mRNA levels; moreover, it indicates that the enhancement of BDNF gene expression may be essential for the clinical effect of mirtazapine.
Rajtar G. and Kleinrok Z.: Influence of some psychotropic drugs on the ethanol elimination by the isolated liver of rats chronically fed with ethanol. Acta Physiol. Pol. During a 4-week period the rats received ethanol (EtOH), as their only drinking fluid, in a concentration ranging from 6% to 20%. In the period of 72 hours after EtOH withdrawal the rats received diazepam (DZP), imipramine (IMI) or caffeine (CAFF) i.p. twice a day in a 12-hours interval. In the experiments carried out on the livers isolated from these rats, we observed the diminution of the rate of EtOH elimination from the perfusate by the livers of DZP and IMI treated rats. CAFF did not change the rate of EtOH elimination.
Motor disturbances in Parkinson’s disease (PD) results from the massive degeneration of dopaminergic neurons and terminals of the nigrostriatal pathway and a decrease in the dopamine (DA) level in the caudate nucleus and putamen. The clinical phase of PD is preceded by a preclinical period where depression is a frequent comorbid disturbance.Dysfunctions of monoaminergic systems could underlie depression in PD. Clinical trials suggest that a treatment with tricyclic antidepressant drugs can be effective in ameliorating depression in PD. Moreover, recent studies have suggested that the administration of pramipexole (the mixed dopamine D2/D3 receptor agonist) may reduce not only motor symptoms (akinesia, rigidity and tremor at rest) but also depression in PD. The aim of the study was to examine the influence of classic tricyclic antidepressant -imipramine and pramipexole on the ‘depressivelike’ behaviour of rats with moderate lesion of the nigrostriatal system. Male Wistar rats were injected bilaterally with 6-OHDA (3.75–15 µg/2.5 µl) into the ventral striatum (vSTR). Imipramine was injected i.p. at a dose of 10 mg/kg once a day and pramipexole s.c. at a dose of 1 mg/kg twice a day for 14 days. The locomotor activity in actometers and behaviour of rats in the forced swimming test (FS) were measured on the 15th day after the surgery. The lesion extent was analysed by HPLC and immunohistochemically. The lesion increased immobility and swimming and decreased climbing in FS, however, it did not influence the locomotor activity of rats. All the lesion-induced disturbances observed in FS were decreased by pramipexole. Imipramine increased only climbing, but had no influence on immobility in lesioned rats. Moreover, imipramine but not pramipexole reduced the locomotor activity in lesioned animals. After the administration of 6-OHDA levels of DA decreased (ca. 45%) in the dorsal striatum (dSTR), vSTR and frontal cortex (FCX). Pramipexole and imipramine injections had no influence on DA levels in lesioned rats. Levels of DA metabolites (DOPAC, HVA) were markedly increased in dSTR and vSTR after injections of pramipexole. Moreover, pramipexole significantly increased the turnover of DOPAC/DA and HVA/DA in dSTR and vSTR in sham-operated and lesioned rats. These results indicate that a relatively moderate dopaminergic lesion which does not produce any motor disturbances, may induce “depressive-like” symptoms which are reversed by dopamine agonist but not by a classic antidepressant. Acknowledgments Study supported by the Project “Depression-Mechanisms-Therapy” (POIG.01.01.02-12-004/09-00), co-financed by EU from the European Regional Development Fund as a part of the Operational Programme “Innovative Economy 2007-2013”
Using extracellular recording we studied changes in the reactivity of rat hippocampal slices to an agonist of the 5-HT7 receptor, 5-carboxamidotryptamine (5-CT; 0.025-1 µM), induced by an earlier treatment of animals with corticosterone. Spontaneous bursting activity was recorded in ex vivo slices incubated in the presence of 2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY 100635; 2 µM), an antagonist of the 5-HT1A receptor, in the medium devoid of Mg2+ ions. Saturation binding assays were performed using [3H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), a specific antagonist of the 5-HT7 receptor. Repetitive, but not single, corticosterone administration lasting 7 and 21 days, resulted in an enhancement of the effect related to the 5-HT7 receptor activation without changes in its binding properties. In a separate set of experiments rats were treated with corticosterone for 3 weeks and additionally with imipramine, beginning on the eighth day of corticosterone administration. In the corticosterone plus imipramine group the excitatory effect of 5-CT was weaker than in the corticosterone group, indicating that corticosterone-induced functional modifications in the reactivity of the 5-HT7 receptor were reversed and further weakened by imipramine treatment. This effect was accompanied by a reduction in the density of [3H]-SB 269970 binding sites. Thus, imipramine treatment counteracts the corticosterone-induced increase in the reactivity of the hippocampal circuitry to the activation of the 5-HT7 receptor.
In spite of intensive research, the problem of treating antidepressant-resistant depressive patients has not yet been solved. Our previous studies demonstrated that joint administration of a tricyclic antidepressant drug, imipramine (IMI) with the uncompetitive antagonist of NMDA receptors, amantadine (AMA), produced stronger "antidepressant" effect in the forced swimming test (Porsolt's test) than the treatment with either drug alone given. Since it has been suggested that dopamine receptors, among others, may play a role in anti-immobility effect of IMI, in the present study we examined the effect of AMA (10 mg/kg) and IMI (5 and 10 mg/kg) given separately or jointly, as a single dose or repeatedly (twice daily for 14 days) on the dopamine D2 and D3 receptors in the rat brain, using receptor autoradiography. Following repeated administration of AMA alone or given in combination with IMI (5 mg/kg), the binding of [3H]quinpirole (dopamine D2/D3 receptors agonist) was increased, and similar changes were observed at the level of mRNA encoding dopamine D2 receptors. We used [3H]7-OH-DPAT to selectively label the dopamine D3 receptors. This experiment has shown that AMA given repeatedly did not induce statistically significant changes in the D3 receptor binding, while IMI at both used doses, increased the [3H]7-OH-DPAT binding, and this effect was still observed after repeated joint administration of AMA with both doses of IMI. However, using both radioligands, we did not observe any synergistic or even additive effects in the binding studies after joint administration of AMA and IMI. Nevertheless, we can conclude that repeated administration of AMA, given together with IMI, induces the up-regulation of dopamine D2 and D3 receptors in the rat brain, and this effect may explain their synergistic action observed in the behavioral studies involving dopaminergic transmission.
Using extracellular recording we studied changes in the reactivity of rat frontal cortical slices to the 5-HT1A, 5-HT2 and 5-HT4 receptor agonists, (±)-2-dipropyloamino-8-hydroxy-1,2,3,4-tetrahydronaphtalene hydrobromide (8-OH-DPAT), (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) and zacopride, respectively, induced by an earlier treatment of animals with corticosterone lasting 1 or 3 weeks. Spontaneous bursting activity was recorded in ex vivo slices incubated in a medium devoid of Mg2+ ions and containing picrotoxin (30 µM). Repetitive, but not single, corticosterone administration resulted in an attenuation of the effect of the activation of 5-HT1A receptors and in an enhancement of the effect related to 5-HT2 receptors. The effect of 5-HT4 receptor activation remained unchanged. In separate two sets of experiments rats were treated with corticosterone for 3 weeks and additionally with imipramine or citalopram, beginning on the eighth day of corticosterone administration. In the corticosterone plus imipramine as well as corticosterone plus citalopram groups the effects of 8-OH-DPAT and DOI were not different from control indicating that corticosterone-induced functional modifications in the reactivity of 5-HT1A and 5-HT2 receptors were reversed by antidepressant treatments.
Major depression is frequently associated with the hyperactivity of the hypothalamic-pituitary-adrenocortical axis, and glucocorticoid synthesis inhibitors have been shown to exert antidepressant action. The aim of the present study was to examine the effect of joint administration of metyrapone (50 mg/kg) and imipramine (5 and/or 10 mg/kg) on immobility time, plasma corticosterone concentration, the weight of spleens and thymuses and the proliferative activity of splenocytes in rats subjected to the forced swimming test - an animal model of depression. Metyrapone alone (50 mg/kg) reduced the immobility time of rats in the forced swimming test and decreased plasma corticosterone level, but did not change immunological parameters. Joint administration of metyrapone and imipramine (5 and 10 mg/kg) produced a more pronounced antidepressant-like effect than either of the drugs given alone. The forced swimming procedure significantly increased the proliferative activity of splenocytes, that parameter being reduced only by co-administration of metyrapone and imipramine. Joint administration of metyrapone and imipramine inhibited to a similar extend the corticosterone level as did treatment with metyrapone alone (about twofold); however, the plasma corticosterone level in animals treated with metyrapone and the higher dose of imipramine did not differ from the concentration of this steroid in control, not-stressed rats. The obtained results indicate that metyrapone potentiates the antidepressant-like activity of imipramine and exerts a beneficial effect on the stress-induced increase in plasma corticosterone concentration and the proliferative activity of splenocytes. These finding suggest that a combination of metyrapone and an antidepressant drug may be useful for the treatment drug-resistant depression and/or depression associated with a high cortisol level.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.