Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  hypochlorite
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Both hypochlorite and ionizing radiation induce oxidation processes of biomolecules. The effects are dependent to a large degree on the dose of the oxidizing agent. Previously we observed that split doses of gamma radiation caused lower hemolysis than the same but single doses. The critical factors influencing the occurrence of this effect were: the value of the first dose and the time between the doses. In this work we examined the effect of gamma radiation (40-400 Gy) on hemolysis of human erythrocytes induced by hypochlorite. Erythrocytes in PBS, hematocrit 2 %, were irradiated with doses of 40, 200 or 400 Gy. The dose-rate was 23.8 Gy/min. Cell suspensions were stirred during irradiation. After irradiation the erythrocytes were incubated for 1, 3 or 4 hours at room temperature and then hypochlorite was added to a 250 microM concentration. Control samples were erythrocytes treated only with NaOCl. The level of hemolysis was determined after NaOCl addition. Hemolysis of erythrocytes preirradiated with the dose of 400 Gy was lower than hemolysis of erythrocytes treated only with NaOCl. The effect was dependent on the time between the end of irradiation and the addition of NaOCl. In contrast, slightly higher hemolysis was observed for erythrocytes preirradiated with lower (40 or 200 Gy) doses of radiation. The observed effect is similar to that obtained for radiation-induced hemolysis. It suggests that ionizing radiation may induce structural and/or functional changes in erythrocytes, which make the cell more resistant to further oxidative damage.
Stimulated neutrophils (PMNL) are a source of the active oxygen species: O2, H2O2 and HOCl/OCT which in turn can act on proteins yielding a variety of mixed oxidation products. A system is proposed in which a model protein — ovalbumin (OVA) first undergoes chlorination by HOC1/OCT and next is oxidised by H2O2. The modification of functional groups (-NH2, -SH, -S-S-, >C=0, Tyr and Trp) in OVA was monitored as well as their accessibility to promote aggregation. Chlorination resulted in additional inter- or intra -S-S- bond formation followed by a decrease in the total sulfhydryl group content. Amino groups were oxidised to carbonyl moieties with a concomitant acidic shift of pi. Formation of chlorotyrosine at the chlorination step was confirmed and its further H202-mediated transformation to bityrosine was demonstrated. It has also been confirmed that tryptophan, and not tyrosine, is the first target for chlorination. SDS/PAGE and HPLC profiles revealed that HOCiyOCl" chlorination promotes formation of aggregates stabilised by non covalent bonds. In conclusion, we suggest that a dramatic change in the OVA molecule structure begins when the molar excess of HOC1/OC1 is about 2 per one reactive group in OVA.
N-acetyl-L-tyrosine (N-acTyr), with the alpha amine residue blocked by acetylation, can mimic the reactivity of exposed tyrosyl residues incorporated into polypeptides. In this study chlorination of N-acTyr residue at positions 3 and 5 in reactions with NaOCl, chlor­amines and the myeloperoxidase (MPO)-H2O2-Cl- chlorinating system were invesigated. The reaction of N-acTyr with HOCl/OCl depends on the reactant concentration ratio em­ployed. At the OCl-/N-acTyr (molar) ratio 1:4 and pH 5.0 the chlorination reaction yield is about 96% and 3-chlorotyrosine is the predominant reaction product. At the OCl-/ N-acTyr molar ratio 1: 1.1 both 3-chlorotyrosine and 3,5-dichlorotyrosine are formed. The yield of tyrosine chlorination depends also on pH, amounting to 100% at pH 5.5,91% at pH 4.5 and 66% at pH 3.0. Replacing HOCl/OCl- by leucine/chloramine or alanine/chlora- mine in the reaction system, at pH 4.5 and 7.4, produces trace amount of 3-chlorotyrosine with the reaction yield of about 2% only. Employing the MPO-H2O2-O chlorinating sys­tem at pH 5.4, production of a small amount of N-acTyr 3-chloroderivative was observed, but the reaction yield was low due to the rapid inactivation of MPO in the reaction system. The study results indicate that direct chlorination of tyrosyl residues which are not incor­porated into the polypeptide structure occurs with excess HOCl/OCl- in acidic media. Due to the inability of the myeloperoxidase-H2O2-Cl system to produce high enough HOCl concentrations, the MPO-mediated tyrosyl residue chlorination is not effective. Semistable amino-acid chloramines also appeared not effective as chlorine donors in di­rect tyrosyl chlorination.
Many of the effects of carnitine are ascribed to its antioxidant properties. The aim of this study was to evaluate the antioxidant properties of carnitine in vitro. Carnitine was found to decolorize ABTS•+, and to protect fluorescein against bleaching induced by AAPH-derived peroxyl radicals and peroxynitrite, thiol groups against oxidation induced by hydrogen peroxide, peroxyl radicals, hypochlorite and peroxynitrite, and erythrocytes against hemolysis induced by peroxyl radicals and hypochlorite. These results show that carnitine has a direct antioxidant action against physiologically relevant oxidants.
Oxidation of proteins is a common phenomenon in the inflammatory process medi­ated by highly reactive agents such as hypochlorite (HOCl/OCl-) produced by acti­vated neutrophils. For instance, in rheumatoid arthritis hypochlorite plays an impor­tant role in joint destruction. One of the major targets for HOCl/OCl- is collagen type II (CII) — the primary cartilage protein. In our study, HOCl/OCl- mediated collagen II modifications were tested using various methods: circular dichroism (CD), HPLC, ELISA, dynamic light scattering (DLS), fluorimetry and spectrophotometry. It was shown that hypochlorite action causes deamination with consecutive carbonyl group formation and transformation of tyrosine residues to dichlorotyrosine. Moreover, it was shown that ammonium chloramine (NH^Cl) formed in the reaction mixture reacts with CII. However, in this case the yield of carbonyl groups and dichlorotyrosine is lower than that observed for HOCl/OCl- by 50%. CD data revealed that collagen II ex­ists as a random coil in the samples and that chlorination is followed by CII fragmenta­tion. In the range of low HOCl/OCl- concentrations (up to 1 mM) 10-90 kDa peptides are predominant whereas massive production of shorter peptides was observed for high (5 mM) hypochlorite concentration. DLS measurements showed that chlorina- tion with HOCl/OCl- decreases the radius of collagen II aggregates from 30 to 6.8 nm. Taking into account the fact that chlorinated collagen is partially degraded, the DLS results suggest that smaller micelles are formed of the 10-90 kDa peptide fraction. Moreover, collagen chlorination results in epitope modification which affects CII rec­ognition by anti-CII antibodies. Finally, since in the synovial fluid the plausible hypochlorite concentration is smaller than that used in the model the change of size of molecular aggregates seems to be the best marker of hypochlorite-mediated collagen oxidation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.