Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  horseradish peroxidase
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Three novel and sensitive enzymatic methods have been developed for the quantification of tramadol in pharmaceutical dosage forms. The proposed methods are based on the reaction of tramadol with 3-methylbenzothiazoline-2-one hydrazone (method A), aniline (method B) and aminoantipyrine in the presence of hydrogen peroxide and horseradish peroxidase to give colored complexes. The colored complexes obtained with 3-methylbenzothiazoline-2-one hydrazone, aniline and aminoantipyrine exhibit absorption maxima at 480 nm, 550 nm and 530 nm, respectively. Regression analysis of Beer’s plots showed good correlation for tramadol in the concentration range (μg/mL) 2-12 for the methods A & B and 4-24 for the method C. The experimental parameters were studied and optimized. The precision and accuracy of the methods were satisfactory. The proposed methods were successfully applied for the quantification of tramadol in 3 brands of commercially available tablet dosage forms. The results were compared satisfactorily with the official method.
The reactions of two heme peroxidases, horseradish peroxidase and lactoperoxidase and their compounds II (oxoferryl heme intermediates, Fe(IV)=0 or ferric protein radical Fe(III)R') and compounds III (resonance hybrids [Fe(IIIK)2 «-» Fe(II)-02l with superoxide radical anion generated enzymatically or radiolytically, and with hydroxyl radicals generated radiolytically, were investigated. It is suggested that only the protein radical form of compound II of lactoperoxidase reacts with superoxide, whereas compound II of horseradich peroxidase, which exists only in oxoferryl form, is unreactive towards superoxide. Compound III of the investigated peroxidases does not react with superoxide. The lactoperoxidase activity loss induced by hydroxyl radicals is closely related to the loss of the ability to form compound I (oxoferryl porphyrin n-cation radical, Fed V)=0(Por+) or oxoferryl protein radical Fe(IV)=0(R )). On the other hand, the modification of horseradish peroxidase induced by hydroxyl radicals has been reported to cause also restrictions in substrate binding (Gębicka, L. & Gębicki, J.L., 1996, Biochimie 78,62-65). Nevertheless, it has been found that only a small fraction of hydroxyl radicals generated homogeneously does inactivate the enzymes.
 A previous report from our group had shown in vitro a direct interaction between peroxidases and dietary antioxidants at physiological concentrations, where in the absence of H2O2, the antioxidants could serve as oxidizing substrates for the peroxidases. However, the physiological relevance of those findings had not been evaluated. The main objective of this study was to determine whether the oxidizing products produced in the interaction between peroxidase and gallic acid at a physiological concentration of 1 μM may promote cell death or survival in a human microvascular endothelial cell line (HMEC-1). Our findings suggested that gallic acid may show a double-edged sword behaviour, since in the absence of H2O2 it may have a pro-oxidant effect which may promote cell injury (evidenced by LDH, Crystal Violet and calcein AM viability/citotoxicity assays), while in the presence of H2O2, gallic acid may act as an antioxidant inhibiting oxidative species produced in the peroxidase cycle of peroxidases. These observations were confirmed with several oxidative stress biomarkers and the evaluation of the activation of cell survival pathways like AKT and MAPK/ERK.
The aim of this study was to evaluate the therapeutic potential of oxidative stress (OS) reduction by using pyridoindole (PI) antioxidants in adjuvant arthritis (AA). The substances tested were stobadine dipalmitate (STB) and SMe1. AA was used as animal model. The experiments included healthy animals, control arthritic animals and arthritic animals with administration of PI in the oral daily dose of 15 mg/kg b.m during 28 experimental days. The rats were sacrificed on day 28. Clinical and biochemical parameters were determined. The effect of PI administration was evaluated on the basis of the following parameters: (a) arthritis (volume of hind paws - HPW, change of animal body mass - CBM), (b) OS (chemiluminescence of whole blood - CWB, levels of thiobarbituric acid reacting substance - TBARS and of HNE- and MDA-protein adducts in plasma and activity of γ-glutamyltransferase (GGT) in hind paw joint homogenates). The PI studied significantly increased the CBM of animals and corrected the HPW. STB also significantly decreased the activity of GGT in joint homogenates. SMe1 was more effective in decreasing plasmatic TBARS levels, but STB was more effective in reducing plasmatic HNE- and MDA-protein adducts. The assay for HNE- and MDA-adducts in plasma as a function of time was applied for the first time in AA. STB markedly decreased spontaneous and PMA-stimulated CWB and reduced neutrophil count. In summary, STB was more effective than SMe1 in reducing OS in AA. Our results showed that the reduction of OS in arthritis also corrected the clinical manifestations of the disease.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.