Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  growth curve
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In order to investigate the most appropriate sampling to assess habitat effects on red deer, we analysed body mass, diastema length and length of the posterior part of the lower jaw of red deer females Cervus elaphus (Linnaeus 1758) in five study areas of the Ardennes (Belgium). Canonical discriminant analysis indicated that the female deer from the 5 study areas could be distinguished from each other on the basis of their body mass, diastema length and posterior length of the lower jaw. Body mass was the most correlated with the first canonical variable, while diastema length and posterior length of the lower jaw were less although significantly correlated. Age- -specific comparisons of means indicated that variations in body mass, diastema length and posterior length of the lower jaw of yearlings and > 4-year-old females were the most effective to separate the different populations and hence were good indices of respectively short and long term variations in environmental conditions. Univariate comparison of means suggested that posterior length of the lower jaw of yearlings could be a valuable alternative to body weight as an indice of habitat quality. The Von Bertalanffy growth equation with to fixed was used to assess the effect of habitat on asymptotic body mass and asymptotic jaw length and on the growth coefficients. The asymptotic values for body mass and jaw length were significantly higher where the habitat conditions appeared to be most favourable. In the poorest habitat, the growth of body mass and jaw length appeared slower, suggesting that female red deer, in this poorer habitat, could partially compensate their lower development as calves and yearlings by a longer growth period; however, only the growth coefficient of the posterior length of the lower jaw differed significantly from that of the best habitat.
Why do some animals weigh a fraction of a milligram and others many tons? Why do some animals mature after a few days and others need several years? Why do some animals grow and then reproduce without growing, while others continue growing after maturation? Why are growth curves so often well-approximated by von Bertalanffy’s equation? Why do some animals produce myriads of tiny eggs and others produce only a few large offspring? Evolution of life histories is driven basically by the size-dependences of three parameters: the resource acquisition rate, metabolic rate and mortality risk. The combinations of size-dependences of this trio produce a plethora of locally optimal life histories, and even more sub-optimal strategies which must coexist with optimal ones in the real world. Additionally, selection forces differ depending on whether a population stays most of the time at equilibrium or in an expansion phase. Life history evolution cannot be understood without mathematical modelling, and optimization of life-time resource allocation is a powerful approach to that, though not the only one. Modelling outcomes from studies based on resource allocation optimization are presented here mainly as graphs.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.