Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  growing plant
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In this short communication we consider the extensibility properties of the cell wall. This is accomplished by a heuristically motivated equation for the expanding volume of the cell. The experimentally determined characteristic time t0 and temperature T0 are the only numbers required for evaluating the effective yielding coefficient Ф(t, T) in the respective time and temperature domains.
In this study we propose a simple mathematical model based on the equilibrium equation for the materials deformed elastically. Owing to the turgor pressure of the cells, the peripheral walls of the outer tissue are under tension, while the extensible inner tissue is under compression. This well known properties of growing multicellular plant organs can be derived from the equation for equilibrium. The analytic solutions may serve as a good starting point for modeling the growth of a single plant cell or an organ.
Pot experiment was carried out with the growing of pepper (Capsicum annuum L.). Before vegetation, controlled release fertilizer Osmocote Plus (10-11-18) was placed on the bottom of the pot that was then filled with peat substrate. The nutritive components embodied in this type of fertilizer are slowly released during 5-6 months. The dynamics of the macroelement contents in the peat substrate was analysed as the effect of Osmocote Plus (10-11-18) fertilizer application. It was shown that the use of localized placement of Osmocote Plus (10-11-18) fertilizer does not sufficiently enrich the substrate with nitrogen (N-NH4 and N-NO3), phosphorus and potassium. The maximal content of these components in relation to the applied rates showed the following values: (N-NH4+N-NO3) - 15.5%; P - 8.0% and K - 15.1%. The values were revealed in the final period of growing (September-October). Optimal content of magnesium in the substrate which was maintained throughout the whole growing period was not only the result of the application of Osmocote Plus (10-11-18), but it was also caused by the presence of magnesium in the lime fertilizer used for the liming of peat and by the water used for irrigation. It was found that localized placement of fertilizer in the substrate caused not only some problems in maintaining optimal nutrient resource level in the substrate for plants, but it also created many methodological problems. It refers to the method of sampling substrate for analyses, to the release of components from the fertilizer granules during extraction, and to the interpretation of results. The problem of substrate analyses with the use of slow-release fertilizers requires further methodological studies.
This article provides morphological and molecular characteristics of Punctodera storiei Brzeski, 1998. Comparison of partial sequences of 18S and 28S rDNA genes from P. stonei sampled in Poland and Punctodera sp. from Canada showed their 100% similarity. This is the first report on the occurrence of P. stonei outside of Europe. We provide data on morphology of males and 2nd stage juveniles of this species and an identification key to males of the genus Punctodera Mulvey et Stone, 1976. Moreover, the paper presents evolutionary relationships of P. stonei within the family Heteroderidae.
Soil salinity is the one of the most important abiotic factors influencing the growth, development and yields of crops. However, it is difficult to determine exact concentrations of salt which cause soil salinity. Salinity threshold levels depend on a crop species, variety, developmental stage and environmental factors. This paper presents the results of an experiment on the effect of different soil concentrations of NaCl soil on several oxidation stress parameters, such as catalase and peoxidase activity, content of ascorbic acid, phenols and flavonoids in bean plants. A laboratory pot experiment was carried out on samples of light silty loam containing 1.2% of humus. Pots were filled with 1 kg soil samples each, to which NaCl solution was added in doses 10, 30 and 50 mM kg-1. Each pot was seeded with 7 seeds of cv. Aura bean. The plants grown in soil without NaCl were the control. On days 14, 21 and 28 green parts of plants were collected for determinations of catalase and peroxidase activity by colorometry as well as the content and flavonoids, phenols, ascorbic acid and chloride concentration by Mohr’s method. The results show that chloride concentration in bean plants increased at higher of NaCl concentration in soil. The activity of the antyoxidative enzymes such as catalase and peroxidase in bean plants, on sampling days, was higher as the chloride concentration in plants increased. Non-enzymatic antioxidants: flavonoids, phenols and ascorbic acid content during the experiment showed different changes with relation to the chloride content, but in all the trials ascorbic acid content was significantly positively correlated whereas the content of phenols was significantly negatively correlated with the chloride content in plant tissues.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.