Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 32

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  greenhouse gas
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The paper presents the results of a study on the impact of the cultivation of crops which may serve as a substrate for a biogas plant on the atmosphere. Subjects addressed in the study cover a range of issues related to greenhouse gas (GHG) emissions from this area of agricultural activity. The amounts of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emitted to the atmosphere in the selected cultivation technologies of beet, maize for silage and grasses were calculated. Emissions of GHG from chemical fertiliser production corresponding to the quantities used in the individual technologies were analysed, and amounts of the emitted above-mentioned pollutants originating from diesel fuel used during agricultural treatments conducted with the use of agricultural machinery were calculated. Emission values were expressed in equivalent units – E CO2eq. The study demonstrated that technologies which result in the highest quantities of emission are maize cultivation technologies – the average value for the study crops is 1 428 490.56 g haˉ¹ CO2eq. The lowest level of pollutants in the form of emitted greenhouse gases originates from grass cultivation and its average value is 904 661.28 g haˉ¹ CO2eq.
Methane is a most important greenhouse gas for planetary heating and it’s produced by methanogenic microorganisms as a metabolic byproduct and creates climate change. Methanogens are ancient organisms on earth found in anaerobic environments and methane is a key greenhouse gas concerned with methanogens. Therefore here is intense interest to writing this paper. A number of experiments have already conducted to study the methanogens in various environments such as rumen and intestinal system of animals, fresh water and marine sediments, swamps and marshes, hot springs, sludge digesters, and within anaerobic protozoa which utilize carbon dioxide in the presence of hydrogen and produce methane. The diversity of methanogens, belong to the domain Archaea and get involved in biological production of methane that catalyzes the degradation of organic compound as a part of global carbon cycle called methanogenesis. Majorly in this article we summaries the diversity of methanogens and their impact on global warming.
Methane (CH4) emission was measured from an open fen on the Zoige Plateau (3500 m a.s.l.) (the eastern edge of the Qinghai- Tibetan Plateau) during two winters of 2006 and 2007. Three dominant plant stands, including Carex muliensis Hand-Mazz. (CM), Eleocharis valleculosa Ohwif. setosa (Ohwi) Kitagawa.(EV) and Kobresia tibetica Maxim (KT) were chosen to be monitored. Winter CH4 emissions were roughly estimated to be 0.94 mg CH4 m–2 h–1. High spatialtemporal variations of the emission were found in this fen (the sequence of CM> EV> KT; 0.63 and 1.24 mg CH4 m–2 h–1 for 2006 and 2007, respectively). Factors involved in the spatial-temporal variation were: 1) water table in summer determining the winter amount of “old” CH4 stored in peat; 2) ice layer determining the release of CH4; 3) plant growth determining both the quantity of CH4 stored in peat and available substrates for CH4 production in winter. However, due to the homogeneity of freezing in winters, predictive factors such as plant growth and water table in summer could contribute more to winter CH4 emission than in situ freezing conditions. Considering that plant growth and water table are also the key factors controlling the spatial-temporal variation of CH4 emission in summer, we therefore suggested that winter CH4 emission represents the “inertia” of summer CH4 emission.
Interest in the use of biomass for energy has increased significantly in the last few years. The latest report by the Intergovernmental Panel on Climate Change highlights the influence mankind has had on the climate: an unprecedented increase in GHG levels in the last 800,000 years and a rise of 40% in CO2 concentrations since pre-industrial times. The challenge now is to find energy alternatives, and in this context, one important option is bioenergy, one of the most important energy sourcesof the future. In light of this, the goal of this paper was to assess the sustainable potential of woodfuel resources in Italy using WISDOM methodology. WISDOM, developed by the FAO, has been applied in many countries around the world. From this study, at national level, household consumption was at 19.3 Mt in 2003 (averagevalue), while the potential supply of woody biomass (productivity) was 24.9 Mt(average value), with a surplus of almost 6 million tons between household consumption and productivity. This study represents an advance in knowledge of the biomass potential for energy use in Italy, and, as such, is subject to possible future improvement. Forest bioenergy development creates good opportunities to mobilize the production potential of European forests, and to contribute to a more climate-friendly, bio-based economy.
Temporal variation is a major source of the uncertainty in estimating the fluxes of the greenhouse gases (GHGs) in terrestrial ecosystems, and the GHG fluxes and its affecting factors in the karst region of southwest China remains weakly understood. Using the static chamber technique and gas chromatography method, the CO₂, CH₄ and N₂O fluxes were carried out between 9 and 11 a.m. at 15 day intervals from June 2008 to May 2009 in a Pinus massoniana forest. Two treatments were chosen for this study: undisturbed (soil with litter layer) and disturbed (surface litter removal). Both treatments were found to be the net source of atmospheric CO₂ and N₂O, but a sink of atmospheric CH₄. The seasonality of soil CO₂ emission coincided with the seasonal climate pattern, with high CO₂ emission rates in the hot-wet season and low rates in the cool-dry season. In contrast, seasonal patterns of CH₄ and N₂O fluxes were not clear, although higher CH₄ uptake rates were often observed in autumn and higher N₂O emission rates were often observed in spring (dry-wet season transition). The litter was active in GHG fluxes, and removal of the litter layer reduced soil CO₂ emission (17%) and increased CH₄ uptake (24%) whereas N₂O fluxes were not affected distinctly in the pine forest, indicating that litter layer had an important effect on C exchanges. In the pine forest, soil CO₂ emissions and CH₄ uptakes correlated significantly with soil temperature (r²= 0.87, P <0.01; r²= 0.34, P <0.05, respectively), but had no significant relationship with soil moisture. And there was a significant correlation between CH₄ flux and NH₄⁺-N (r²= 0.39, P < 0.05) and soil inorganic N (r²= 0.48, P <0.05), but no significant correlation was found between CH₄ flux and NO₃⁻-N. Moreover, we found a significant negative logarithmic correlation between N₂O flux and soil NO₃⁻-N concentration (r²= 0.41, P <0.05), and the relationship between CO₂ emission and soil inorganic N content (r²= 0.35, P < 0.05). These results suggested that soil temperature and mineral N dynamics largely affected the temporal GHG exchanges between forest soil and atmosphere.
18
72%
Analysis of temperature measurements in the Polesye and the republic in general revealed the presence of two warmings during the period of observations (~120 years). The warming of the 1930's is of radiation origin and relates to the atmospheric purification from volcanic powder. The heating took place in summer. Modem warming is that of winter type. Its origin is related to the increase of greenhouse gases content in the atmosphere. Changes in precipitation taking place for of many years are of great complexity. In the south part of the republic during the postwar period the amount of precipitation decreased by about 100 mm when compared to the preceding half-century. In the north Belarus a rise of precipitation for the past two decades is observed. The amelioration of southern areas of Belarus and the adjacent territories resulted in temperature variation in southern part of our state by 0.3-0.4 °C, precipitation by 10-35 mm in summer. Temperature and precipitation variation patterns differ in the first and second part of summer.Analysis of the range of daily temperature course, as well as temperature maxima and minima for big towns revealed anthropogenic "signal" that must stressed be while assessing variations in daily course ranges. Interpretation of the features of temperature variability in space and time in towns and suburbs was presented.
Climate change accelerates global warming and has thus become an increasing concern with need for prompt solutions. This process occurs due to increased atmospheric green house gas (GHG) emissions. The agro sector (crop and livestock agriculture) contributes 10 to 12% per year of the total global anthropogenic emission and tends to increase. Most agricultural GHG emissions are generated by intensively fertilized soils, enteric fermentation, and manure management. Remarkable GHG fluxes occurred from grasslands which occupy 69% of global agricultural land. The aim of this investigation was to evaluate and estimate GHG emissions in natural and abandoned grassland improved by managed fertilizing. Experimental data sets cover grassland (clay loam topsoil over silt loam, Calc(ar)i-Endohypogleyic Luvisol) abandoned more than 20 years, which has subsequently been fertilized with different rates of N and multiple NPK. Direct CO₂, N₂O, and CH₄ emissions were measured in differently studied treatments (semi-natural sward: Control (0), N⁶⁰, N¹²⁰, N¹⁸⁰, N²⁴⁰, N¹⁸⁰P¹²⁰, N¹⁸⁰K¹⁵⁰, N⁶⁰P⁴⁰K⁵⁰, and N¹⁸⁰P¹²⁰K¹⁵⁰; cultural pasture: N¹⁸⁰P¹²⁰K¹⁵⁰) during vegetation period (2009). Decreasing tendency of emission fluxes was determined during vegetation period and employing lower fertilizer rates. Therefore, appropriate fertilizing rate (N⁶⁰P⁴⁰K⁵⁰) of extensive grassland should be considered for its mitigating impact on climate change.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.