Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 43

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  grape-vine
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Stilbene synthases (STSs) are enzymes that play a critical role in the biosynthesis of stilbene, phytoalexins in a small number of unrelated plant species, and are induced by various biotic and abiotic stressors like pathogen attack, UV-irradiation or ozone exposure. To investigate the molecular basis for ozone-induced plant stress responses, we have examined the promoter of the grapevine resveratrol synthase (Vst1). In this report we summarize the influence of ozone on gene regulation. In transgenic tobacco a chimeric gene construct, containing the Vst1 promoter combined with the β-glucuronidase (GUS) reporter gene, is rapidly induced by ozone (0.1 µl·l⁻¹, 12 h). The same construct is also strongly induced by ethylene (20 µl·l⁻¹, 12 h). Promoter deletion analysis of the 5′ flanking sequence identified a positive regulatory element between −430 bp and −280 bp. This region contains ethylene-responsive enhancer elements, as well as an elicitor-responsive sequence in inverse orientation.
Fruit production should be adapted to future scenarios that are frequently associated with scarce resources, especially freshwater and fertilizers. New biologically-based fruit production strategies, i.e. taking into account tree growth and water status, are required to optimize irrigation and fertilization under abiotic stress conditions. It was hypothesized that a moderate abiotic stress, here deficit irrigation with or without nitrogen deficit, in the preharvest period, could decrease postharvest losses due to diseases and pruning weights due to reduced vegetative growth, without sacrificing the yield and fruit quality. This study was conducted over two years using the same trees of ‘Moncante’ nectarine cultivar grown in a commercial orchard. Trees were assigned to three treatments: (1) full irrigation at 80% estimated crop evapotranspiration (ETc), (2) deficit irrigation, i.e. at 75% of full irrigation, and (3) deficit irrigation and deficit nitrogen, i.e. at 75% of full irrigation and 75% of usual N-fertilization adopted by the grower in this commercial orchard. Deficit irrigation alone and in combination with deficit nitrogen reduced postharvest diseases and pruning weights without significant yield losses. Our results suggest that ETc-based approaches of reduced water irrigation may be a sustainable way to decrease phytosanitary inputs and workload in the orchard while maintaining the orchard performance.
Nutrition of grapevines is very sensitive issue in vineyards. Soil quality is very important matter for growth and quality in vine growing. Rootstocks affect the growth and productivity of grapevine as well as increase or decrease of the nutrient uptake. The present study was conducted to determine the phenological changes of nutrient uptakes in 10 years ‘Trakya İlkeren’ grape variety (Vitis vinifera L.) in the heavy clay soil conditions. The grapevines are grown on 5BB and 5C rootstocks. The changes of macro and micronutrients in leaf blades from bud burst to post harvest period were investigated in the experiment. Leaf nutrient contents of leaf blades show varied depending on the phenological stages and rootstocks (P < 0.01 and P < 0.05). Nitrogen and phosphorus content of leaf blade was decreased until veraison stage for both rootstocks. The highest potassium (K) content was obtained at blooming stage. In blooming stage nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg) nutrients was found high on 5C rootstock whereas calcium (Ca) was high on 5BB. Grapevines were found insufficient for P, K and Mg nutrients in the study. Total chlorophyll and chlorophyll a/b ratio showed significantly varied among to rootstocks and phenological stages (P < 0.01). While the highest leaf chlorophyll content was measured during flowering period it was found at the lowest through to harvest on both rootstocks. Overall total chlorophyll contents and chlorophyll a/b ratio were significantly higher on 5BB grafted vines. In the research, 5C was found to be more successful rootstock than 5BB for nutrient uptakes.
The research has been performed on roots of Vitis vinifera, cv. Himrod, obtained from seedlings grown under chill stress conditions (+10oC in the day and +7oC at night), under optimum conditions (+25oC in the day and +18oC at night) and from seedling which underwent a recover period after the chill stress treatment. The purpose of the study has been to determine quantitative and qualitative changes in phenolic compounds as well as to demonstrate changes in antiradical properties of extracts from grapevine roots, which appeared as a result of chill stress and during recovery under the optimum conditions following the stress. Phenolic compounds from grapevine roots were extracted using 80% acetone. The total content of phenolics was determined by colorimetry. The content of tannins was tested by precipitation with bovine serum albumin. The reducing power as well as DPPH• free radical and ABTS+• cation radical scavenging activity of the extracts were also tested. In order to identify phenolic compounds present in the extracts the RP-HPLC technique was employed. The tested material was found to contain tannins and three identified phenolic acids: ferulic, caffeic and p-coumaric ones. The latter occurred in the highest concentrations (from 4.46 to 6.28 µg/g fresh matter). Ferulic acid appeared in smaller amounts (from 1.68 to 2.65 µg/g fresh matter), followed by caffeic acid (from 0.87 to 1.55 µg/g fresh matter). Significantly less total phenolic compounds occurred in roots of seedlings subjected to chill stress. However, the total content of these compounds increased significantly in roots of plants which underwent recovery after chill stress. Concentration of tannins was determined by two methods. The content of condensed tannins was depressed in roots as a result of low temperature stress, whereas the content of condensed and hydrolysing tannins (determined via the BSA method) rose under chill stress conditions. A significant increase in tannins in root extracts (determined with both methods) was found during the recovery process after the stress. The three identified phenolic acids appeared in grapevine roots as ester-bound compounds. It has been demonstrated that the content of phenolic acids significantly fell as a result of low temperatures, but increased during recovery after chill stress. The weakest ability to scavenge DPPH• and ABTS+• free radicals as well as the reducing power were shown by the extract obtained from grapevine roots from the seedlings subjected to chill stress. Both free radical scavenging activity and reducing power were observed to increase considerably during recovery after stress. This seems to prove that during the recovery process following chill stress the synthesis of antioxidative compounds in grapevine roots is much more intensive.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.