Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  germinating seed
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In this paper the complete cDNA sequence of a newly identified triticale phytocystatin, TrcC-7, was analyzed. Because TrcC-7 transcripts were present in seeds, we hypothesized that it may regulate storage protein accumulation and degradation. Therefore, changes in mRNA and protein levels during the entire period of seed development and germination were examined. Expression of TrcC-7 increased during development and decreased at the end of maturation and subsequently increased during seed germination. Based on these results, TrcC-7 likely regulates cysteine proteinase activity during the accumulation and mobilization of storage proteins.
The tested material consisted of grapevine Vitis californica stratified seeds germinated under optimum conditions (+25°C in water), under osmotic stress (-0.2 MPa in PEG solution) and submitted to recovery after stress (+25°C in water). The germinating seeds were determined to contain tannins, catechins and the following phenolic acids: gallic, caffeic, p-coumaric and ferulic. The acids occurred in free, ester- and glycoside-bound forms. The dominant form of phenolic acids was the ester-bound fraction. Gallic acid was the most abundant phenolic acid in germinating seeds, while ferulic acid appeared in the smallest amounts. Our analysis of tannins demonstrated that osmotic stress depressed their concentration. Presence of catechin group compounds such as catechin and epicatechin was also determined. In each sample epicatechin was dominant. The total concentration of catechin increased under stress conditions and declined during post-stress recovery. Catechins are a constituent of tannins and their increase under osmotic stress is most probably caused by the breakdown of some tannins in seeds germinating under stress conditions. Samples submitted to osmotic stress were also found to contain less of total phenolic compounds, whereas in samples which underwent post-stress recovery the total level of phenolic compounds increased. Compared to extracts from seeds germinating under optimum conditions, osmotic stress depressed the capacity of extract to scavenge DPPH● (2,2-diphenyl-1-picrylhydrazyl) and ABTS●+ – 2,2-Azino-bis (3-etylbenzothiazoline-6- -sulfonic acid) free radicals, but the antioxidant activity rose in seeds submitted to recovery after stress. Positive correlation was therefore demonstrated between the total content of phenolic acids in germinating grapevine seeds and the reducing power of extracts obtained from these seeds and their free radical scavenging activity. The results suggest that osmotic stress inhibits the activity of antioxidizing enzymes in germinating grapevine seeds. Thus, the antioxidative defence system is largely blocked under osmotic stress. It seems that a very high oxidoreductive potential in grapevine tissues prior to occurrence of osmotic stress is essential for maintaining proper homeostasis of oxidation and reduction reactions.
Plant growth throughout the world is often limited by unfavourable environmental conditions. This paper reports results of a study on long- and short-term osmotic stress (−0.5 MPa) followed by a recovery on in vitro translational capacity of polysomes and on the composition of polysome-associated proteins in germinating pea (Pisum sativum L.) seeds. Here we show that, under osmotic stress, cytoskeleton-bound polysomes were charaterized by the highest translation activity, which may be indicative of an important role that this population of polysomes plays in the synthesis of the so-called “stress proteins”. We also find out that in response to osmotic stress, new proteins (22.01, 96.47 and 105.3 kDa), absent in the unstressed sample, associated with the total pool of polysomes, whereas the protein of 22.95 kDa, which was present in the embryonic tissue of seeds germinating under unstressed conditions, disappeared. These changes may have affected both the stability and the translational capacity of polysomes.
Arsenic (As) is a potential contaminant of groundwater as well as soil in many parts of the world. The effects of increasing concentration of As (25 μM and 50 μM As2O3) in the medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism i.e. α-amylase, β-amylase, starch phosphorylase and acid invertase were studied in germinating seeds of two rice cvs. Malviya-36 and Pant-12 during 0-120 h period. As toxicity in situ led to a marked decline in the activities of α-amylase, β-amylase in endosperms as well as embryoaxes of germinating rice seeds. The activity of acid invertase increased in endosperms as well as embryoaxes whereas starch phosphorylase activity declined in endosperms but increased in embryoaxes under As treatment. In endosperms a decline in starch mobilization was observed under As toxicity, however under similar conditions the content of total soluble sugars increased in embryoaxes. The observed inhibition in activities of amylolytic enzymes might contribute to delayed mobilization of endospermic starch which could affect germination of seeds in As polluted environment, while the induced acid invertase activity and im creased sugar accumulation in embryoaxes could serve as a possible component for adaptation mechanism of rice seedlings grown under As containing medium.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.