Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 80

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  gas exchange
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (PN) but increased the stomata conductance (gₛ), concentrations of intercellular CO₂ (Cᵢ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of PN, and increase of gₛ, Cᵢ and E in leaves.
The acid-base equilibrium is closely linked to gas exchange in the lungs, and respiratory exchange ratios are used to evaluate respiratory effectiveness and tissue oxygen levels. Acid-base indicators are determined in both arterial and venous blood samples. This study compares the usefulness of acid-base indicators of venous and arterial blood in monitoring the condition of horses with recurrent airway obstruction. Prior to treatment involving bronchodilating glucocorticoids, expectorant and mucolytic drugs, more pronounced changes were observed in venous blood (pH 7.283, pCO2 61.92 mmHg, pO2 35.541 mmHg, HCO3 - 31.933 mmHg, BE 2.933 mmol/l, O2SAT 58.366%, ctCO2 38.333 mmol/l) than in arterial blood (pH 7.309, pCO2 53.478 mmHg, pO2 90.856 mmHg, HCO3 - 28.50 mmHg, BE 3.133 mmol/l, O2SAT 93.375%, ctCO2 31.652 mmol/l), indicating compensated respiratory acidosis. The improvement of respiratory efficiency minimized acidosis symptoms in both venous blood (pH 7.365, pCO2 43.55 mmHg, pO2 47.80 mmHg, HCO3 - 30.325 mmHg, BE 3.050 mmol/l, O2SAT 80.10%, ctCO2 29.80 mmol/l) and arterial blood (pH 7.375, pCO2 39.268 mmHg, pO2 98.476 mmHg, HCO3 - 26.651 mmHg, BE 4.956 mmol/l, O2SAT 98.475%, ctCO2 28.131 mmol/l). Venous blood parameters were marked by greater deviations from mean values, both before and after treatment. Acid-base indicators determined in venous blood are indicative of respiratory disturbances, but they do not support a comprehensive evaluation of gas exchange in the lungs.
The influence of mycorrhiza with Hebeloma crustuliniforme on plant growth, leaf water potential, leaf gas exchange and chlorophyll content in 3 poplar varieties (P. petrowskyana, P. deltoides cv. Plantierens, P. balsamifera) were investigated. After 11 weeks of plant growth mycorrhizal structures (frequency of mycorrhiza - FF%, intensity of the mycorrhizal colonization - MC% were observed in plant roots belonging to the treatment (M). No statistically significant differences were observed in the frequency of mycorrhiza (F%) and intensity of the mycorrhizal colonization (MC%) in plant roots of the treatment M between the examined poplar cultivars. The frequency of mycorrhiza (FF%) was high, and it reached about 75%, while the intensity of the mycorrhizal colonization (MC%) by fungi hyphae was slightly lower and equaled to from 49 to 58%. For plants, exposed to the inoculation with mycorrhizal fungi, advantageous and statistically significant changes in the measured physiological traits were observed. In this research advantageous differences in reactions between inoculated and non-inoculated poplar cultivars were observed, which was shown in the measurements of some physiological traits. Compared to the control plants (C), in the case of plants of the treatment (M) greater increase in plant height (∆Н), increase in chlorophyll content (SPAD), higher values of water potential (Ψ), and increase - in photosynthesis rate (Pn), stomatal conductance (gs) and water use efficiency (WUE), and decrease in transpiration rate (E), were observed. Although those differences were relatively small, we may presume that if they occur through a longer period they may become more distinct e.g. as a greater increase in height in the inoculated plants.
Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl₂ in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat seedlings were investigated. Gas exchange was monitored at 3, 9, 24 days after treatment (DAT). Growth parameters, chlorophyll content, leaf chlorophyll fluorescence, and Cd concentration in shoot and root were measured at 24 DAT. Seedling growth, gas exchange, chlorophyll content, chlorophyll fluorescence parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected Cd concentrations in shoots and roots could be explained by the regression model Y = K/(1 + exp(a + bX)). Jing 411 was found to be Cd tolerant considering parameters of chlorophyll content, photosynthesis and chlorophyll fluorescence in which less Cd translocation was from roots into shoots. The high Cd concentrations were in shoots and roots in Yangmai 10 which has been found to be a relative Cd tolerant cultivar in terms of most growth parameters.
The present pot experiment studied the effect of different soil moisture contents (60 – 70% CWC (capillary water capacity) – control; 30 – 35% CWC – water stress) on buckwheat productivity, the gas exchange parameters and health of buckwheat nuts. It was found that water deficit affected adversely certain biometric features investigated (plant height, number of nuts per cluster) and caused a decrease in seed weight per plant. It was also shown that water stress reduced the values of the investigated gas exchange parameters (photosynthesis rate, transpiration rate, intercellular-space CO2 concentration, and stomatal conductance) relative to the control treatment. Different soil moisture contents did not have a clear effect on fungal colonization of seeds. The multiplex PCR assays did not enable the detection of the genes responsible for mycotoxin synthesis. Under water deficit conditions, an increase was found in the content of albumin and globulin fractions as well as of glutelin fractions.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 4 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.