Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 53

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  gamma-radiation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Both hypochlorite and ionizing radiation induce oxidation processes of biomolecules. The effects are dependent to a large degree on the dose of the oxidizing agent. Previously we observed that split doses of gamma radiation caused lower hemolysis than the same but single doses. The critical factors influencing the occurrence of this effect were: the value of the first dose and the time between the doses. In this work we examined the effect of gamma radiation (40-400 Gy) on hemolysis of human erythrocytes induced by hypochlorite. Erythrocytes in PBS, hematocrit 2 %, were irradiated with doses of 40, 200 or 400 Gy. The dose-rate was 23.8 Gy/min. Cell suspensions were stirred during irradiation. After irradiation the erythrocytes were incubated for 1, 3 or 4 hours at room temperature and then hypochlorite was added to a 250 microM concentration. Control samples were erythrocytes treated only with NaOCl. The level of hemolysis was determined after NaOCl addition. Hemolysis of erythrocytes preirradiated with the dose of 400 Gy was lower than hemolysis of erythrocytes treated only with NaOCl. The effect was dependent on the time between the end of irradiation and the addition of NaOCl. In contrast, slightly higher hemolysis was observed for erythrocytes preirradiated with lower (40 or 200 Gy) doses of radiation. The observed effect is similar to that obtained for radiation-induced hemolysis. It suggests that ionizing radiation may induce structural and/or functional changes in erythrocytes, which make the cell more resistant to further oxidative damage.
Rats were exposed to a total dose of 0.75 Gy of γ radiation from a 60Co source, receiving three doses of 0.25 Gy at weekly intervals. During two days before each irradiation, the animals received daily intragastric doses of 26 mg pantothenol or 15 mg β-carotene per kg body mass. The animals were killed after the third irradiation session, and their blood and livers were analyzed. As found previously (Slyshenkov, V.S., Omelyanchik, S.N., Moiseenok, A.G., Trebukhina, R.V. & Wojtczak, L. (1998) Free Radical Biol. Med. 24, 894-899), in livers of animals not supplied with either pantothenol or β-carotene and killed one hour after the irradiation, a large accumulation of lipid peroxidation products, as conjugated dienes, ketotrienes and thiobarbituric acid-reactive substances, could be observed. The contents of CoA, pantothenic acid, total phospholipids, total glutathione and GSH/GSSG ratio were considerably decreased, whereas the NAD/NADH ratio was increased. All these effects were alleviated in animals supplied with β-carotene and were completely abolished in animals supplied with pantothenol. In the present paper, we extended our observations of irradiation effects over a period of up to 7 days after the last irradiation session. We found that most of these changes, with the exception of GSH/GSSG ratio, disappeared spontaneously, whereas supplementation with β-carotene shortened the time required for the normalization of biochemical parameters. In addition, we found that the activities of glutathione reductase, glutathione peroxidase, catalase and NADP-dependent malate (decarboxylating) dehydrogenase ('malic enzyme') in liver were also significantly decreased one hour after irradiation but returned to the normal level within 7 days. Little or no decrease in these activities, already 1 h after the irradiation, could be seen in animals supplemented with either β-carotene or pantothenol. It is concluded that pantothenol is an excellent radioprotective agent against low-dose γ radiation.
In this study we determined Vi bacteriophage III sensitivity to native cisplatin, γ radiation (60Co) or to irradiated cisplatin, and checked the possibility of enhanced Vi bacteriophage III inactivation under combined exposure to cisplatin and γ radiation. We used highly purified phage suspensions in 0.9% NaCl solution or phosphate-buffered saline. Phage suspensions were titrated using a double agar layer method. Our study implies that survival of Vi bacteriophage III shows an exponential inverse correlation with cisplatin concentration in the incubation medium and the time of phage incubation in the presence of cisplatin. The use of irradiated cisplatin reduces phage survival in comparison with suspensions containing non-irradiated cisplatin. Irradiation of phage suspension with cisplatin causes a significant increase of phage inactivation in comparison with either treatment alone. Our results suggest that presence of cisplatin in irradiated medium enhances the radiobiological effect on Vi bacteriophages III.
13
72%
Terrestrial background gamma radiation in urban surroundings depends not only on the content of radionuclides in the soil and bedrock, but also on levels of radionuclides in building materials used for the construction of roads, pavements and buildings. The aim of this study was to characterize an outdoor absorbed dose rate in air in the city of Wroclaw and to indicate factors that affect the background gamma radiation in an urban space. Gamma spectrometric measurements of the radionuclide content and absorbed dose rate in air were performed by means of portable RS-230 gamma spectrometers and at sites with various density of buildings, in the city center and in more distant districts, over pavements and roads as well as in a park, a cemetery and on four bridges. Measurements were performed at a 1-meter height. The absorbed dose rate in air ranged from 19 to 145 nGy h-1, with the mean of 73 nGy h-1. This paper implicates that terrestrial background gamma radiation depends on the type of building material used for the construction of roads and pavements and on the density of buildings shaping the geometry of the radiation source. The highest background gamma radiation was observed in the center of the city, where buildings are situated close to each other (nearly enclosed geometry) and pavements are made of granite. The lowest background gamma radiation was noticed on bridges with nearly open field geometry. Additionally, three profiles at the heights of 0.0, 0.5 and 1.0 m were arranged between two opposite walls of the hall of the Main Railway Station in Wroclaw, where the floor is made of various stone slabs. The results indicated that the absorbed dose rate in air varied, depending on the type of building material, but became averaged along with the height.
B6C3F1 mice were treated per os with either normal saline or N-nitrosodiethylamine (NDEA) (0.01, 0.1, 1.0 or 5.0 mg/kg body weight) daily for 21 days. On day 22nd of the experiment, the animals were whole-body g-irradiated (10 Gy) and examined at 3.5 days post-radiation exposure. Pretreatment of mice with NDEA at the lowest dosage (0.01 and 0.1 mg/kg) increased thiobarbituric acid-reactive substances (TBARS) and catalase (CAT) activity in the liver. Since the agent at the highest doses (1.0 and 5.0 mg/kg) did not have any effect(s) on TBARS, it was associated with the selective increase of thiol (SH) groups and GSH-linked anti-oxidant enzyme activities such as glutathione peroxidase (GPX), transferase (GST) and reductase (GR). g-Irradiation decreased TBARS and increased superoxide dismutase (SOD) and GPX activity in NDEA-treated mice. Simultaneously, g-rays did not have any effect(s) on GST and GR enzymes, and it slightly decreased SH groups and CAT activity. Results of the present study indicate that NDEA can promotes lipid peroxidation in mice liver. g-Irradiation of mice at a dose of 10 Gy is enable to modify the activity of hepatic anti-oxidant enzymes, which in turn can lead to the reduction of NDEA-induced lipid peroxidation and/or pro-oxidant shift(s). The anti-oxidant enzymes such as SOD and GPX are suggested to be mainly involved in this process(s).
18
72%
W pracy podjęto próbę poprawienia jakości chlebów pszennych przez dodatek do mąki pszennej typu 550 i 850 tych samych mąk napromienionych promieniami gamma w dawce 3 i 5 kGy oraz mąki pszenżytniej typu 680 z pszenżyta odmiany Vero, poddanej radiolizie dawką 3 kGy, w ilości 10% masy mąki. Wypiek przeprowadzono metodą bezpośrednią. Większą objętość chlebów w porównaniu z chlebem standardowym uzyskano dodając do mąki typu 550 mąkę pszenną napromienioną dawką 3 kGy oraz do mąki typu 850 mąkę pszenną i pszenżytnią napromienioną tą samą dawką promieniowania gamma. Podczas przechowywania stopień twardnienia miękiszu chlebów pszennych z mąki typu 550 z udziałem napromienionych mąk był bardzo zbliżony do chleba standardowego, natomiast chleby pszenne z mąki typu 850 z udziałem wszystkich napromienionych mąk twardniały w mniejszym stopniu niż chleb standardowy.
ATM kinase (ATM) is essential for activation of cell cycle check points and DNA repair in response to ionizing radiation (IR). In this work we studied the molecular mechanisms regulating DNA repair and cell death in human T-lymphocyte leukemic cells, MOLT-4. Apoptosis was evaluated by flow-cytometric detection of annexin V. Early apoptotic cells were determined as sub-G1 cells and late apoptotic cells were determined as APO2.7-positive ones. Proteins involved in ATM signalling pathway were analysed by Western-blotting. We observed a rapid (0.5 h) phosphorylation of ATM declining after 6 h after irradiation by all the doses studied (1.5, 3.0, and 7.5 Gy). Checkpoint kinase-2 (Chk-2) was also phosphorylated after 0.5 h but its phosphorylated form persisted 4, 2, and 1 h after the doses of 1.5, 3.0, and 7.5 Gy, respectively. The amount of p53 protein and its form phosphorylated on Ser-392 increased 1 h after irradiation (1-10 Gy). The lethal dose of 7.5 Gy caused an immediate induction and phosphorylation of p53 after 0.5 h post-irradiation. At the time of phosphorylation of p53, we found simultaneous phosphorylation of the oncoprotein Mdm2 on Ser-166. Neither ATM nor its downstream targets showed a dose-dependent response after 1 h when irradiated by the doses of 1-10 Gy. MOLT-4 cells were very sensitive to the effect of IR. Even low doses, such as 1.5 Gy, induced apoptosis 16 h after irradiation (evaluated according to the cleavage of nuclear lamin B to a 48-kDa fragment). IR-induced molecular signalling after exposure to all the tested doses was triggered by rapid phosphorylation of ATM and Chk-2. Subsequent induction of p53 protein and its phosphorylation was accompanied by concomitant phosphorylation of its negative regulator, oncoprotein Mdm2, and followed by induction of apoptosis.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.