Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  eukaryotic organism
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The purpose of this study was to examine the effects of oxidative stress caused by hydroperoxide (H2O2) in the presence of iron ions (Fe2+) on mitochondria of the amoeba Acanthamoeba castellanii. We used isolated mitochondria of A. Castellanii and exposed them to four levels of H2O2 concentration: 0.5, 5, 15, and 25 mM. We measured basic energetics of mitochondria: oxygen consumption in phosphorylation state (state 3) and resting state (state 4), respiratory coefficient rates (RC), ADP/O ratios, membrane potential (ΔΨm), ability to accumulate Ca2+ , and cytochrome crelease. Our results show that the increasing concentrations of H2O2 stimulates respiration in states 3 and 4. The highest concentration of H2O2 caused a 3-fold increase in respiration in state 3 compared to the control. Respiratory coefficients and ADP/O ratios decreased with increasing stress conditions. Membrane potential significantly collapsed with increasing hydroperoxide concentration. The ability to accumulate Ca2+ also decreased with the increasing stress treatment. The lowest stress treatment (0.5 mM H2O2) significantly decreased oxygen consumption in state 3 and 4, RC, and membrane potential. The ADP/O ratio decreased significantly under 5 mM H2O2 treatment, while Ca2+ accumulation rate decreased significantly at 15 mM H2O2. We also observed cytochrome crelease under increasing stress conditions. However, this release was not linear. These results indicate that as low as 0.5 mM H2O2 with Fe2+ damage the basic energetics of mitochondria of the unicellular eukaryotic organism Acanthamoeba castellanii
A recent study revealed a subfamily of N6-adenine (m⁶A) methyltransferases that comprises a few functionally studied eukaryotic members acting on mRNA and prokaryotic members acting on DNA as well as numerous uncharacterized open reading frames. Here, we report cloning and functional characterization of a prokaryotic member of this family encoded by transposon Tn1549 from Enterococcus spp.
MADS-box genes encode transcription factors in all eukaryotic organisms thus far studied. Plant MADS-box proteins contain a DNA-binding (M), an intervening (I), a Keratin-like (K) and a C-terminal C-domain, thus plant MADS-box proteins are of the MIKC type. In higher plants most of the well-characterized genes are involved in floral development. They control the transition from vegetative to generative growth and determine inflorescence meristem identity. They specify floral organ identity as out­lined in the ABC model of floral development. Moreover, in Antirrhinum majus the MADS-box gene products DEF/GLO and PLE control cell proliferation in the develop­ing flower bud. In this species the DEF/GLO and the SQUA proteins form a ternary complex which determines the overall "Bauplan" of the flower. Phylogenetic reconstructions of MADS-box sequences obtained from ferns, gymno- sperms and higher eudicots reveal that, although ferns possess already MIKC type genes, these are not orthologous to the well characterized MADS-box genes from gym- nosperms or angiosperms. Putative orthologs of floral homeotic B- and C-function genes have been identified in different gymnosperms suggesting that these genes evolved some 300-400 million years ago. Both gymnosperms and angiosperms also contain a hitherto unknown sister clade of the B-genes, which we termed Bsister. A novel hypothesis will be described suggesting that B and Bsister might be involved in sex determination of male and female reproductive organs, respectively.
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 ± 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37oC. Under these conditions, the Km calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na++ and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc.
Conserved 14-3-3 proteins have been shown to play regulatory roles in eukaryotic cells, including cell cycle control and differentiation. We were interested in the possible involvement of 14-3-3 proteins in the embryogenic process of barley (Hordeum vulgare L.). Barley microspore-derived embryo development was used as a model system. Immunolocalization of three barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C, was carried out using isoform-specific antibodies. In immature microspore-derived embryos, 14-3-3C was specifically expressed underneath the L1 layer of the shoot apical meristem and in the scutellum. Comparative studies showed that 14-3-3C was also expressed underneath the L1 layer of the shoot apical meristem and in the scutellum of immature zygotic embryos. We further demonstrated that 14-3-3C expression is restricted to L2 layer-derived cells of in vitro shoot meristematic cultures. Our results reveal that 14-3-3C isoform tissue-specific expression is closely related to defined events during differentiation processes in embryogenesis and in vitro meristematic cultures.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.