Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  eukaryote
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Messenger RNA levels of three rcw-family genes (Pprasl, Ppras2, and Pprapl) were measured in different life forms and throughout the cell cycle of the slime mold Physarum polycephalum. All three genes are expressed at constant rates in the uni­nucleate amoebae and flagellates, regardless of the culture conditions (solid or liquid medium, particulate or dissolved nutrients). In the multinucleate stages (micro- and macroplasmodia) Pprasl and Pprapl mRNAs are somewhat less abundant, while Ppras2 is not expressed at all. The early stages of the amoeba-plasmodium transition proceed without any drop in Ppras2 expression. During the synchronous cell cycle in macroplasmodia Pprasl and Pprapl arc expressed at a constant level.
We have cloned and sequenced a cDNA of the human homologue of the Saccharomyces cerevisiae Suv3 putative RNA helicase which is indispensable for mitochondrial function in yeast. The human Suv-3-like protein has a typical mitochondrial leader sequence. Northern blot data and analysis of ESTs in the data banks indicate that this human gene (SUPV3L1) is expressed in practically all tissues, though at different levels. Sequence homology analysis has shown a strong conservation of the protein in a number of eukaryotic organisms - plants, mammals and fungi, but no close homologues exist in bacteria with the exception of the purple bacterium Rhodobacter sphaeroides. This gene is thus ubiquitously present in all eukaryotic organisms.
Hsp70 (DnaK) is a highly conserved molecular chaperone present in bacteria, eukaryotes, and some archaea. In a previous work we demonstrated that DnaK from the archaeon Methanosarcina mazei (DnaKMm) and the DnaK from the bacterium Escherichia coli (DnaKEc) were functionally similar when assayed in vitro but DnaKMm failed to substitute for DnaKEc in vivo. Searching for the molecular basis of the observed DnaK species specificity we compared substrate binding by DnaKMm and DnaKEc. DnaKMm showed a lower affinity for the model peptide (a-CALLQSRLLS) compared to DnaKEc. Furthermore, it was unable to negatively regulate the E. coli σ32 transcription factor level under heat shock conditions and poorly bound purified σ32, which is a native substrate of DnaKEc. These observations taken together indicate differences in substrate specificity of archaeal and bacterial DnaKs. Structural modeling of DnaKMm showed some structural differences in the substrate-binding domains of DnaKMm and DnaKEc, which may be responsible, at least partially, for the differences in peptide binding. Size-exclusion chromatography and native gel electrophoresis revealed that DnaKMm was found preferably in high molecular mass oligomeric forms, contrary to DnaKEc. Oligomers of DnaKMm could be dissociated in the presence of ATP and a substrate (peptide) but not ADP, which may suggest that monomer is the active form of DnaKMm.
Nuclear receptors are ligand-dependent transcription factors responsible for con­trolling differentiation, growth and development of higher eukaryotes. Three amino acids within the recognition a-helix of the DNA-binding domain of the nuclear recep­tors constitute the so-called "P-box" which determines response element specificity. In the ultraspiracle (Usp) protein, which together with EcR forms the heterodimeric ecdysone receptor, the P-box residues are E19, G20 and G23. Substitution of E19, the most characteristic amino acid for estrogen receptor-like P-boxes, with alanine showed that the mutation did not appreciably alter the affinity of the wild-type Usp DNA-binding domain (UspDBDwT for a probe containing natural ecdysone response element (hsp27wt). Since in many cases E19 contacts a G/C base pair in position -4, which is absent in hsp27wt, we analysed the interaction of UspDBDwT, E19A and other P-box region mutants with the hsp27wt derivative which contains a G/C instead of an T/A base pair in position -4. UspDBDwT exhibited higher affinity for this ele­ment than for hsp27wt. Moreover, a different interaction pattern of P-box region mutants was also observed. Thus we conclude that the E19 residue of UspDBD is not involved in any hsp27wt sequence-discerning contacts. However, substitution of the hsp27wt T/A base pair in position –4 with G/C generates target sequence with distinct functional characteristics and possibly with a new specificity. These results could serve as a basis for understanding the role of the presence of a T/A or G/C base-pair in the position –4 in the two types of ecdysone response elements found in nature.
MicroRNAs (miRNAs) are an abundant class of 20-27 nt long noncoding RNAs, involved in post-transcriptional regulation of genes in eukaryotes. These miRNAs are usually highly conserved between the genomes of related organisms and their pre-miRNA transcript, about 60-120 nt long, forms extended stem-loop structure. Keeping these facts in mind miRsearch is developed which relies on searching the homologues of all known miRNAs of one organism in the genome of a related organism allowing few mismatches depending on the phylogenetic distance between them, followed by assessing for the capability of formation of stem-loop structure. The precursor sequences so obtained were then screened through the RNA folding program MFOLD selecting the cut-off values on the basis of known Drosophila melanogaster pre-miRNAs. With this approach, about 91 probable candidate miRNAs along with pre-miRNAs were identified in Anopheles gambiae using known D. melanogaster miRNAs. Out of these, 41 probable miRNAs have 100% similarity with already known D. melanogaster miRNAs and others were found to be at least 85% similar to the miRNAs of various other organisms.
Ferritin is well known as the main intracellular iron storage protein in both prokaryotes and eukaryotes, keeping it in a soluble and non-toxic form, though the role of ferritin as a vaccine candidate in echinococcosis has not yet been delineated. Through our study, ferritin was cloned from Echinococcus granulosus and expressed in Escherichia coli. The recombinant E. granulosus ferritin (rEgferritin) has a molecular weight of 19 kDa and could be recognized by anti-mice serum in Western blotting. The specific antibody was detected by enzyme-linked immunosorbent assay. Mice vaccinated with rEgferritin and challenged intraperitoneally with E. granulosus protoscoleces revealed significant protective efficacy up to 85.6%, compared with the control group. Thus, rEgferritin could be a promising candidate as an effective vaccine to prevent the infection of echinococcosis.
Rab7 GTPases are involved in membrane trafficking in the late endosomal/lysosomal pathway. In Paramecium octaurelia Rab7a and Rab7b are encoded by paralogous genes. Antipeptide antibodies generated against divergent C-termini recognize Rab7a of 22.5 kDa and Rab7b of 25 kDa, respectively. In 2D gel electrophoresis two immunoreactive spots were identified for Rab7b at pI about 6.34 and about 6.18 and only one spot for Rab7a of pI about 6.34 suggesting post-translational modification of Rab7b. Mass spectrometry revealed eight identical phosphorylated residues in the both proteins. ProQ Emerald staining and ConA overlay of immunoprecipitated Rab7b indicated its putative glycosylation that was further supported bya faster electrophoretic mobility of this protein upon deglycosylation. Such a post-translational modification and substitution of Ala140 in Rab7a for Ser140 in Rab7b may result in distinct targeting to the oral apparatus where Rab7b associates with the microtubular structures as revealed by STED confocal and electron microscopy. Rab7a was mapped to phagosomal compartment. Absolute qReal-Time PCR analysis revealed that expression of Rab7a was 2.6-fold higher than that of Rab7b. Upon latex internalization it was further 2-fold increased for Rab7a and only slightly for Rab7b. Post-transcriptional gene silencing of rab7a suppressed phagosome formation by 70 % and impaired their acidification. Ultrastructural analysis with double immunogold labeling revealed that this effect was due to the lack of V-ATPase recruitment to phagolysosomes. No significant phenotype changes were noticed in cells upon rab7b silencing. In conclusion, Rab7b acquired a new function, whereas Rab7a can be assigned to the phagolysosomal pathway.
The rye genomic library, which consists of DNA fragments in the range of 0.5–1.1 kb, was screened for the presence of tri-and tetranucleotide and compound microsatellites. Of the 1,600,000 clones analysed, 102 clones were positive and 41 were suitable for SSR primer pair design. Twenty-six primer pairs amplified specific products, and six of them were capable of detecting polymorphism among 30 rye accessions of different genetic backgrounds. Using a set of Chinese Spring-Imperial wheat-rye addition lines, it was possible to locate 3 newly identified microsatellites on chromosomes 3R, 4R and 7R.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.