Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  degeneration
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In this study we examined the potential role of atherosclerosis in the main arteries supplying blood to the carotid body in the organ’s morphological degradation with age. We addressed this issue by comparing the ultrastructural picture of carotid bodies and of fragments of the carotid artery bifurcation in two age-extreme groups of rats: young - 3 months old and senescent - 24 months old. Tissues were excised under surgical anesthesia, fixed in aldehydes, and processed for transmission electron microscopy. We found that the old carotid body parenchyma exhibited profound degenerative changes. Chemoreceptor cells were at various stages of atrophy, ranging from swollen mitochondria and fewer secretory vesicles to dark dehydrated cells. In contrast, the senescent carotid artery bifurcation was little different from that in young rats. Particularly, endothelial cells were in perfect condition. There were some changes in deeper arterial wall layers such as breaks in the continuity of elastic bands or a subtly different phenotype of smooth muscle cells. No foam cells or calcium build-ups were found in the arterial walls. Such changes correspond to the process of arterial wall stiffening in old age rather than to the outright atherosclerosis. Lack of atherosclerosis in the common carotid arteries, which could hamper blood flow, argues against its playing a role in the morphological age-changes in the carotid bodies.
Our earlier studies showed that inhibition of VMAT2 caused depletion of dopamine in rat striatum accompanied with outflow of glutamate and production of hydroxyl radical. Inhibition of VMAT2 is observed in an early phase of Parkinson’s Disease (PD) as evidenced by PET studies in PD patients and in non-human primates. Recently it is observed that many neurons also release a classical transmitter other than the one with which they are usually associated. It is shown that neurons releasing monoamines can also release the excitatory transmitter glutamate. All neurons contain glutamate for its role in protein synthesis and metabolism, but they also express VGLUTs required for excitotoxic glutamate release. Moreover, it is also shown that several catecholamine cells such as VTA dopamine neurons are able corelease glutamate. Disturbed function of both, VMAT 2 and VGLUT may start catecholamine neurons degeneration that occurs at the early pre-clinical stage of PD. Accumulation of cytosolic dopamine may be neurotoxic for neurons through the generation of free radicals. Similarly, glutamate released from neurons or glial cells via GLT-1 transporter or cystine-glutamate exchanger or purinergic P2X7 receptor may stimulate glutamate receptors on various cells, induce increase in intracellular calcium which leads to excitotoxicity and generation of free radicals. ATP is required for packing of dopamine or glutamate in neuronal and glial vesicles and disturbed vesicular function results in ATP metabolism to adenosine in the presence of 5’-nucleotidase. In our study we tried to understand the early changes in dopamine synapses and glial cell responses which may provide insights on PD pathology. We injected animals with reserpine to inhibit vesicular transport and measured veratridine-evoked (100 µM) dopamine, glutamate and adenosine release using microdialysis in frontal cortex of freely moving rats. Extracellular dopamine, adenosine and glutamate were assayed by HPLC with electrochemical, fluorescenece and VIS detection. Reserpine at a single dose of 2.5 mg/kg increased veratridine-evoked glutamate release to 200% and adenosine release to 5 000% of baseline 20 h after administration. Reserpine at a dose of 0.25 mg/kg given repeatedly for 14 days increased evoked-glutamate release to maximum 210% and adenosine to 1 400% of baseline. At the same time veratridine-induced DA release was also markedly increased as compared to control animals. Veratridine-evoked glutamate and adenosine release were increased by 150 and 600% of baseline, respectively in intact rats. Obtained results indicate that under conditions of damaged vesicular transport there is significant overflow of glutamate and adenosine as well as increase in dopamine release in the rat frontal cortex. Marked increase in extracellular adenosine release may lead to activation of adenosine A2A receptors located in glutamate terminals or glial cells causing damage through induction of oxidative stress by glutamate or dopamine. Corelease of neurotransmitters and neuromodulators from neuronal or glial cells with disturbed vesicular transport may underline cortical pathology observed in PD.
Motor disturbances in Parkinson’s disease (PD) results from the massive degeneration of dopaminergic neurons and terminals of the nigrostriatal pathway and a decrease in the dopamine (DA) level in the caudate nucleus and putamen. The clinical phase of PD is preceded by a preclinical period where depression is a frequent comorbid disturbance.Dysfunctions of monoaminergic systems could underlie depression in PD. Clinical trials suggest that a treatment with tricyclic antidepressant drugs can be effective in ameliorating depression in PD. Moreover, recent studies have suggested that the administration of pramipexole (the mixed dopamine D2/D3 receptor agonist) may reduce not only motor symptoms (akinesia, rigidity and tremor at rest) but also depression in PD. The aim of the study was to examine the influence of classic tricyclic antidepressant -imipramine and pramipexole on the ‘depressivelike’ behaviour of rats with moderate lesion of the nigrostriatal system. Male Wistar rats were injected bilaterally with 6-OHDA (3.75–15 µg/2.5 µl) into the ventral striatum (vSTR). Imipramine was injected i.p. at a dose of 10 mg/kg once a day and pramipexole s.c. at a dose of 1 mg/kg twice a day for 14 days. The locomotor activity in actometers and behaviour of rats in the forced swimming test (FS) were measured on the 15th day after the surgery. The lesion extent was analysed by HPLC and immunohistochemically. The lesion increased immobility and swimming and decreased climbing in FS, however, it did not influence the locomotor activity of rats. All the lesion-induced disturbances observed in FS were decreased by pramipexole. Imipramine increased only climbing, but had no influence on immobility in lesioned rats. Moreover, imipramine but not pramipexole reduced the locomotor activity in lesioned animals. After the administration of 6-OHDA levels of DA decreased (ca. 45%) in the dorsal striatum (dSTR), vSTR and frontal cortex (FCX). Pramipexole and imipramine injections had no influence on DA levels in lesioned rats. Levels of DA metabolites (DOPAC, HVA) were markedly increased in dSTR and vSTR after injections of pramipexole. Moreover, pramipexole significantly increased the turnover of DOPAC/DA and HVA/DA in dSTR and vSTR in sham-operated and lesioned rats. These results indicate that a relatively moderate dopaminergic lesion which does not produce any motor disturbances, may induce “depressive-like” symptoms which are reversed by dopamine agonist but not by a classic antidepressant. Acknowledgments Study supported by the Project “Depression-Mechanisms-Therapy” (POIG.01.01.02-12-004/09-00), co-financed by EU from the European Regional Development Fund as a part of the Operational Programme “Innovative Economy 2007-2013”
Successive degradation of tissues in a strict order was observed in unfertilized ovules of the endemitic species Daphne arbuscula (Čelak) before flower drop. Cell death begins in the nucellus and inner integument in the vicinity of the vascular bundle terminal, proceeds in the outer integument and ends in the ovary wall. This successivity corresponds with that of programmed recycling described for senescing leaves of deciduous trees. In the extreme conditions of the D. arbuscula habitus, flowering is abundant but fertilization of ovules is relatively rare and seed set is low, so recycling of nutrients from tissues of unfertilized ovules should be expected as part of the life strategy of this species.
The postmicrosomal protein fraction obtained from distal stumps of rat sciatic nerves at 0-6 days following transection were investigated by means of one- and two-dimensional electrophoresis. In all experimental groups, total amount of protein was significantly higher than in the control group. Proteins were resolved into 27 bands after SDS-PAGE. Their molecular weights ranged between 16.2 and 335.4 kDa. Eleven fractions displayed significant quantitative differences. After 2-D-electrophoresis, the pI of the proteins ranged from 4.2 to 7.4. They were resolved to 28 molecular masses from 13.5 kDa to 335.4 kDa. The greatest numbers of fractions (90-109) were observed on the 3rd, 4th, 5th and 6th day after nerve transection. Thus, during first 6 days after transection intensive changes in protein fraction content and composition take place in the distal stump of peripheral nerve. These processes seem to be most prominent on the 4th day after lesion. Results confirm our earlier in vivo findings.
Postmortem studies of depressed patients showed that one of the most consistent findings is a decrease in the density of glial cells in human brain cortical regions, especially in the prefrontal and cingular areas. Furthermore, a decline in the number of astrocytes in the prefrontal cortex was found in rats after chronic unpredictable stress – one of the generally accepted animal models of depression. An important function of astrocytes in the brain tripartite synapse is the uptake of released glutamate. Hence the basic consequence of the loss of astrocytes is a reduction in glutamate uptake and an excess of glutamate in the synaptic cleft. The glutamatergic predominance in the excitator-inhibitory balance is postulated to be involved in the pathogenesis of depression. Recently, depressive-like behavior have been demonstrated in rats after astrocytes ablation. Therefore in the present study we tried to ascertain whether astroglial degeneration in the prefrontal cortex was sufficient to induce a depressive-like behavior and could serve as an animal model of depression. Astrocytic toxin L- or D,Lalpha-aminoadipic acid (AAA), 100 µg/2 µl, was microinjected bilaterally into rat medial prefrontal cortex (PFC). The toxins were injected twice, on day 1 and 2; afterwords depressive-like behavior was assessed by a forced swim test on day 5 of the experiment. Some rats were additionally treated with the antidepressant imipramine (30 mg/kg, i.p.) 24, 5 and 1 h before the forced swim test. The rats’ brains were taken out for an analysis on day eight. Histological verifications of the injection sites and immunohistochemical staining for the astrocytic marker glial fibrillary acidic protein (GFAP), were carried out. The GFAP positive cells were stereologically counted in the PFC. Also the level of GFAP expression was determined by the Western blot analysis in all the experimental groups. It was found that both L-AAA and DL-AAA induced a significant increase in immobility time in the forced swim test, without changing the overall locomotor activity, which indicates depressive-like effects of these compounds. The immunohistochemical and Western blot analyses showed a significant decrease in the number of GFAP-positive cells and GFAP level in the PFC of toxin-treated rats. The decrease amounted to ca. 50%. Both the behavioral and the GFAP changes were reversed or partially inhibited by imipramine injection. The obtained results suggest an important role of astrocytes in the PFC in mood regulation; moreover, they indicate that the degeneration of astrocytes in this structure may be used as an animal model of depression. This study was supported by Grant POIG.01.01.02-12-004/09Friday, November 23, 2012
The present study deals with the influence of experimental ZEA mycotoxicosis on histopathological lesions in ovaries of bitches, which were administered zearalenoneperos during anestrus phase for one hundred days. The experiment was performed on 9 sexually mature, clinically healthy bitches. The animals assigned into two experimental groups received zearalenone per os at two doses, 25 μg/kg b.w. and 50 μg/kg b.w., respectively: the bitches from control group received placebo per os. On the last day of zearalenone intoxication, the bitches were ovariohystorectomized. Histopathology and immunohistochemistry were performed. The study revealed that zearalenone and its metabolites caused profound regressive lesions: granular cells degeneration and atrophy. Numerous edemas and blood extravasations were also found. The intensity of these changes was significantly dose dependent. Furthermore, in ovarian cells and tissues of both experimental groups, no reaction for PCNA antigen was observed. In conclusion, zearalenone and its metabolites exerts unfavorable effects on the morphology of ovaries in bitches.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.