Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  cytosol
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Torlińska T., Ożegowski S., Paluszak J., and Hryniewiecki T.: In vivo effect of 2-deoxy-D-glucose on glucose-6-phosphate dehydrogenase activity in the cytosol of liver, heart and skeletal muscle of rats. Acta Physiol. Pol. 1990, 41 (6): 137-143. 2-deoxy-D-glucose (2-DG), the unmetabolizable analogue of glucose induces a series of metabolic, hormonal and behavioral responses, causing cellular glucoprivation. According to in vitro studies, 2-DG inhibits phosphofructokinase in cultured human cells. The present investigations deal with changes in the cytosolic glucocse-6-phosphate dehydrogenase activity following in vivo 2-DG administration. A single dose of 2-DG (600 mg/kg) has no influence on the activity of glucose-6-phosphate dehydrogenase in the cytosol of liver, heart and skeletal muscle of the rat. The concommitant increase in serum glucose, lactate and FFA concentrations observed in the study indicates indirectly a stimulation of adrenergic system. After three days of successive administration of 2-DG to rats, dehydrogenase activity decreased in the liver by approx 57% and in the skeletal muscle by approx 82% in comparison with control animals. Moreover the in vivo effect of 2-DG was found to be fully reversible, probably when the total amount of the inhibitor was excreted.
It has been suggested that Bax translocation to the mitochondria is related to apoptosis, and that cytosol acidification contributes to apoptosis events. However, the mechanisms remain obscure. We investigated the effect of acidification on Bax translocation and on ultraviolet (UV) light-induced apoptosis. The Bax translocation assay in vitro showed that Bax translocated to the mitochondria at pH 6.5, whereas no Bax translocation was observed at pH 7.4. VHDBB cells expressing the GFP-Bax fusion protein were treated for 12 h with a pH 6.5 DMEM medium, nigericin (5 μg/ml) and UV light (50 J/cm2), separately or in combination, and Bax translocation to the mitochondria was determined by SDS-PAGE and Western blot, and apoptotic cell death was detected by flow cytometry. The results showed that some of the Bax translocated to the mitochondria in the cells treated with the normal medium, nigericin and UV in combination, whereas all of the Bax translocated to the mitochondria in the cells treated with the pH 6.5 medium, nigericin and UV in combination. In VHDBB cells treated for 12 h with nigericin, UV alone, and UV and nigericin in combination, the respective rates of apoptotic cell death were 25.08%, 33.25% and 52.88%. In cells treated with pH 6.5 medium and nigericin, pH 6.5 medium and UV, and pH 6.5 medium, nigericin and UV in combination, the respective rates of apoptotic cell death increased to 37.19%, 41.42% and 89.44%. Our results indicated that acidification induces Bax translocation from the cytosol to the mitochondria, and promotes UV lightmediated apoptosis. This suggests that there is a possibility of improving cancer treatment by combining acidification with irradiation or chemotherapeutic drugs.
Adenosine deaminase (ADA) was partially purified 486- and 994- -fold from rat liver mitochondria and cytosol, respectively. Relative molecular mass of the enzymes from both fractions was 34 (KM). Km for adenosine and 2'-deoxy-adenosine were 3.08 x 10~5 M and 3.03 x 10 ~5 M for mitochondrial ADA and 3.12 x 10"5 M and 2.87 x 10~5 M for cytosolic ADA. The enzyme from both subcellular fractions had the maximum activity at pH 7.5 - 8.0, and pi 5.2 and 4.2 for mitochondrial and cytosolic enzyme, respectively. The enzyme was inhibited by erythro-9-(2-hydroxy-3-nonvl)adenine and 2'-deoxycoformycin with A'i 4.4 X 10~7 M and 3.2 x 10 M for mitochondrial ADA and 4.9 X I0~7 M 2.8 x 10"7 M for cytosolic ADA. Among the natural nucleoside and deoxynucleotide derivatives tested, deoxyGTPand UTP inhibited only cytosolic adenosine deaminase by 60% and 40%, respectively.
Relatively little is known about the direct influence of acid rain (AR) on pro-and antioxidative changes in plant cells. Intercompartmental differences between cytosol and mitochondria were not studied before. Aboveground parts of plants treated with different pH variants of AR and prooxidative changes (lipid peroxidation) as well as antioxidative enzyme activities (ascorbate peroxidase, APx; glutathione peroxidase, GSH-Px) in the cytosolic and mitochondrial fractions were examined. The character of changes in antioxidative enzyme activities and of prooxidative alterations was closely connected with the cell com partment as well as with pH and time after treatment. The activity of both APx and GSH-Px increased more intensively in cytosol. Contrastingly, strong induction of lipid peroxides formation was observed in the mitochondrial fraction. The results suggest that cucumber mitochondria are more susceptible to oxidative damage caused by AR than cytosol. Antioxidative defense of cytosol appeared to provide sufficient protection against the oxidative stress imposed by AR.
Aqueous-saline human placenta extract (HPE) is known to possess antioxidant activity due to the high concentration of bioactive substances. This fact allows its application in clinical practice in order to treat oxidation-induced diseases. Extract antioxidant activity is mainly conditioned by proteins. Freezing of extracts has been shown to lead to their antioxidant activity increasing due to protein conformation changes. Different biological models are widely used in order to evaluate efficacy of novel antioxidants and mechanisms of their action. One such model appears to be erythrocytes under nitrite-induced oxidative stress. Nitrite is known to be able to penetrate erythrocyte membrane and to oxidize hemoglobin. In order to investigate whether HPE is able to decrease nitrite-induced oxidative injuries and to evaluate the protein contribution to this process, spectrophotometric and electron spin resonance (ESR) assays were used. Experimental data have revealed that antioxidant activity of extracts and of some of their fractions correlates with methemoglobin concentration lowering. Preliminary erythrocyte incubation with an extract fraction of 12 kDa allows preservation of the structural-dynamic cytosol state the closest to the control.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.