Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  cysteine protease
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Physiological and pathological roles of cysteine proteases make them important targets for inhibitor development. Although highly potent inhibitors of this group of enzymes are known, their major drawback is a lack of sufficient specificity. Two cysteine protease covalent inhibitors, viz. (i) Z-RL-deoxo-V-peptide-epoxysuccinyl hybrid, and (ii) Z-RLVG-methyl-, have been developed and modeled in the catalytic pocket of papain, an archetypal thiol protease. A number of configurations have been generated and relaxed for each system using the AMBER force field. The catalytic pockets S3 and S4 appear rather elusive in view of the observed inhibitors' flexibility. This suggest rather limited chances for the development of selective structure-based inhibitors of thiol proteases, designed to exploit differences in the structure of catalytic pockets of various members of this family.
Cysteine proteases (CPs) are responsible for many biochemical processes occurring in living organisms and they have been implicated in the development and progression of several diseases that involve abnormal protein turnover. The activity of CPs is regulated among others by their specific inhibitors: cystatins. The main aim of this review is to dis­cuss the structure-activity relationships of cysteine proteases and cystatins, as well as of some synthetic inhibitors of cysteine proteases structurally based on the binding frag­ments of cystatins.
Cysteine proteases are involved in many physiological processes and their hyperac­tivity may lead to severe diseases. Nature has developed various strategies to protect cells and whole organisms against undesired proteolysis. One of them is the control of proteolytic activity by inhibition. This paper presents the mechanisms underlying the action of proteinaceous inhibitors of cysteine proteinases and covers propeptides binding backwards relative to the substrate or distorting the protease catalytic cen­tre similarly to serpins, the p35 protein binding covalently to the enzyme, and cystatins that are exosite binding inhibitors. The paper also discusses tyropins and chagasins that, although unrelated to cystatins, inhibit cysteine proteinases by a sim­ilar mechanism, as well as inhibitors of the apoptosis protein family that bind in a di­rection opposite to that of the substrate, similarly to profragments. Special attention is given to staphostatins, a novel family of inhibitors acting in an unusual manner.
Calpains and caspases are ubiquitous cysteine proteases that are associated with a variety of cellular pathways. Calpains are involved in processes such as long term potentiation, cell motility and apoptosis, and have been shown to cleave non-erythroid (brain) α- and β-spectrin and erythroid β-spectrin. The cleavage of erythroid α-spectrin by calpain has not been reported. Caspases play an important role in the initiation and execution of apoptosis, and have been shown to cleave non-erythroid but not erythroid spectrin. We have studied the effect of spectrin fragments on calpain and caspase activities. The erythroid and non-erythroid spectrin fragments used were from the N-terminal region of α-spectrin, and C-terminal region of β-spectrin, both consisting of regions involved in spectrin tetramer formation. We observed that the all spectrin fragments exhibited a concentration-dependent inhibitory effect on calpain, but not caspase activity. It is clear that additional studies are warranted to determine the physiological significance of calpain inhibition by spectrin fragments. Our findings suggest that calpain activity is modulated by the presence of spectrin partial domains at the tetramerization site. It is not clear whether the inhibitory effect is substrate specific or is a general effect. Further studies of this inhibitory effect may lead to the identification and development of new therapeutic agents specifically for calpains, but not for caspases. Proteins/peptides with a coiled coil helical conformation should be studied for potential inhibitory effects on calpain activity.
A new crystal form of papain from the latex of Carica papaya, complexed with an inhibitor (Z-Arg-Leu-Val-Gly-CHN2) was obtained by the vapor-diffusion method using a methanol/ethanol mixture as a precipitant. The slat-like crys­tals are monoclinic, space group P2 1, with unit cell parameters a = 42.6 A, b = 49.8 A, c = 50.5 A, β= 111.9°, and contain one molecule in the asymmetric unit. The crystals are stable in the X-ray beam and diffract beyond 1.8 A. A molecular model has been placed in the unit cell by molecular replacement.
Staphylococcus aureus is a human pathogen causing a wide range of diseases. Most staphylococcal infections, unlike those caused by other bacteria are not toxigenic and very little is known about their pathogenesis. It has been proposed that a core of se­creted proteins common to many infectious strains is responsible for colonization and infection. Among those proteins several proteases are present and over the years many different functions in the infection process have been attributed to them. How­ever, little direct, in vivo data has been presented. Two cysteine proteases, staphopain A (ScpA) and staphopain B (SspB) are important members of this group of enzymes. Recently, two cysteine protease inhibitors, staphostatin A and staphostatin B (ScpB and SspC, respectively) were described in S. aureus shedding new light on the com­plexity of the processes involving the two proteases. The scope of this review is to sum­marize current knowledge on the network of staphylococcal cysteine proteases and their inhibitors in view of their possible role as virulence factors.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.