Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 19

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  cryptic species
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The field vole (Microtus agrestis) is characterised by extremely large blocks of heterochromatin on both the X and Y chromosome. Some other Microtus also have blocks of heterochromatin on their sex chromosomes but not as extensive and always of independent origin from the heterochromatic expansion found in M. agrestis. Coupled with evidence of geographic variation in large heterochromatic blocks within other species (e.g. in the western hedgehog Erinaceus europaeus), it might be expected that field voles would show substantial variation in size and disposition of the sex chromosome heterochromatin. In fact, only minor variation has been described up to now. Those studies conducted previously were largely on field voles from central and northern Europe. Here, we describe the karyotype of field voles from Portugal, of interest because recent molecular studies have shown field voles from western Iberia to be a separate evolutionary unit that might be considered a cryptic species, distinct from populations further to the east. The two Portuguese field voles (one female, one male) that we examined also had essentially the same karyotype as seen in other field voles, including the giant sex chromosomes, but with small differences in the structure of the Y chromosome from that described previously. The finding that field voles throughout Europe show relatively little variation in their giant sex chromosomes is consistent with molecular data which suggest a recent origin for this complex of species/near-species.
Ceratomyxa parasites from the gall bladders of 23 species of cardinalfishes (family Apogonidae) from Australian waters were examined for their taxonomic identity and phylogenetic relatedness. We identified 15 of the 23 apogonid fish species infected with species of Ceratomyxa. Although the majority of apogonid species harboured only a single Ceratomyxa species, four were found with multiple species of Ceratomyxa. This study describes eight novel species using a combination of morphological, small subunit ribosomal DNA (SSU rDNA) and biological characters. Six Ceratomyxa species are reported from single apogonid species, while two are reported from multiple host species. Molecular data were critical in identifying several morphologically cryptic species. However, our results suggest that SSU rDNA was not capable of distinguishing all the species present in the current study system and alternative genetic markers should be investigated in the future.
Three previously undescribed species of wageneri group of Gyrodactylus Nordmann, 1832 (subgenus Limnonephrotus, Gyrodactylidae, Monogenoidea) related to G. lavareti Malmberg, 1957 are described here. G. pomeraniae sp. nov. was found on roach (Rutilus rutilus) in Poland and Belgium, G. ouluensis sp. nov. on roach in Finland and G. salvelini sp. nov. on Arctic charr (Salvelinus alpinus) in the Lake Inari, Finland. A molecular redescription of G. lavareti on Coregonus lavaretus is also presented, and G. bliccensis on Alburnus alburnus from river Morava, Czech Republic is included in the phylogenetic analysis. In addition, a hybrid clone of maternal G. pomeraniae sp. nov. and paternal G. lavareti found on farmed rainbow trout (Oncorhynchus mykiss) is characterized. The molecular species description was based on the complete CO1 gene of the mitochondrial DNA, and on phylogenetic comparison of the internal transcribed spacer segment (ITS1-5.8S rDNA-ITS2) of nuclear ribosomal DNA. The species hosted by cyprinids were basal in the phylogeny rooted by numerous relatives of wageneri-species group.
The Afrotropical leaf-nosed bat Hipposideros caffer has been traditionally regarded as a complex of populations, currently pertaining to two recognized cryptic species, H. caffer and H. ruber. Extent of distribution and morphological variation of these bats has raised concerns over whether the current perception of the complex reflects true phylogenetic relationships and taxonomic diversity. Our phylogenetic analysis of nucleotide sequences of the mitochondrial cytochrome b gene challenged the hypothesis of two cryptic species. Instead of the two reciprocally monophyletic lineages expected, corresponding to the two species, we recovered four distinct lineages with deep internal divergences. Two sister clades within a lineage of bats of H. caffer represent respectively the nominotypical form H. c. caffer, restricted to Southern Africa, and H. c. tephrus, inhabiting the Maghreb, West Africa and the Arabian Peninsula. Geographical isolation and deep genetic divergence suggest species status of both the forms. Another lineage comprises specimens of both morphotypes from West and East Africa. It probably represents a distinct species but its taxonomic assignation remains obscure. A Central African lineage of H. ruber comprises two sister clades, which become sympatric in Cameroon. Their status has to be clarified with additional evidence, since nuclear gene flow might be taking place. A further divergent lineage with H. ruber morphotype, most probably representing another distinct species, is restricted to West Africa. Although all three genetic forms of H. ruber may correspond to named taxa, their proper taxonomic assignation has to be assessed by comparison with type material.
The taxon Rhinolophus microglobosus is elevated to specific rank on the basis of clearly defined morphometric and acoustic characters which differentiate it from Rhinolophus stheno. It is recorded from Cambodia for the first time. Rhinolophus malayanus exhibits considerable geographical variation in echolocation calls, with apparently two phonic types: a northern population with lower frequency calls and a predominantly southern population with higher frequencies. However, this acoustic divergence is not reflected in any morphometric divergence, and the taxonomic status of the two phonic populations remains unclear. Discriminating characters of all three species are given, together with distribution data and short ecological summaries. The value of echolocation as an indicator of cryptic species and the zoogeographical implications of the study are briefly discussed.
A cryptic species of the big-eared horseshoe bat (Rhinolophus macrotis) was identified in Jiangxi Province, China, based on significant differences in echolocation frequencies and morphology. Consistent with the bimodal distribution of body sizes of R. macrotis specimens obtained from the same cave, we now consider this population to be comprised of two putative species; a large and a small form, with dominant echolocation call frequencies of 49 kHz and 65 kHz, respectively. Cytochrome b sequences of these two phonic forms diverged by 3.16–3.25%, a similar level of divergence to that between the large form and the outgroup, R. rex (3.33–3.77%). These differences strongly suggest that the two phonic forms are distinct species. We also found that the wing loading and aspect ratio of the small form was much lower than that of the large form, suggesting that the small form is capable of foraging in denser forest. Without dietary evidence, the ecological significance of the observed difference in echolocation call frequency between the two forms (16 kHz) remains unknown.
Recent advances in molecular techniques have provided new tools for confirming species identities, however they can be expensive and results are not immediately available. Myotis lucificugus and M. yumanensis are morphologically cryptic species of bats sympatric in western North America that can be difficult to distinguish in the field. We evaluated a set of models that used morphological and echolocation call characters obtained in the field to predict species identity as determined by DNA analysis. We constructed models using data from 98 M. lucifugus and 100 M. yumanensis captured throughout the Pacific Northwest from which we had obtained high-quality, time-expansion recordings of their echolocation calls. The best model for distinguishing the species combined forearm length and characteristic frequency of echolocation calls and was able to identify 92% of M. lucifugus and 91% of M. yumanensis individuals, with ≥95% confidence. We evaluated the applicability of our model by testing it on additional datasets. Our model correctly classified 83% of M. lucifugus (n = 30) and 93% of M. yumanensis (n = 29) individuals captured in north-central Oregon, whose echolocation calls were recorded using a zero-crossings echolocation detection system. It also correctly classified 86% of M. lucifugus (n = 22) and 85% of M. yumanensis (n = 26) individuals, captured throughout our study area, for which only poor-quality time-expansion recordings of echolocation calls were obtained. Combining morphometrics with echolocation call characteristics may be a useful approach for distinguishing among pairs of cryptic species of bats in other areas.
We describe three new species of Cryptogonimidae belonging to two new genera, Caulanus gen. nov. and Latuterus gen. nov., from the large piscivorous reef fish Lutjanus bohar Forsskål, 1775, recovered from Heron and Lizard Islands off the Great Barrier Reef and Rasdhoo Atoll, Maldives. To support our morphologically based taxonomic approach, three nuclear ribosomal DNA regions (28S, ITS1 and ITS2) were sequenced and analysed to explore the geographic distribution and integrity of the putative species recovered from these widespread localities. Sequencing of the rDNA regions included multiple replicates and revealed three distinct genotypes. Two of the observed genotypes were associated with phenotypically similar specimens of Latuterus, but were each restricted to a single locality, Lizard Island, GBR or Rasdhoo Atoll, Maldives. A posteriori analysis of the associated morphotypes revealed distinct morphological differences and these consistent differences, in combination with the consistent genetic differences led to the recognition of two distinct species in the system. Caulanus is distinguished by having oral spines, caeca which open via ani at the posterior end of the body, tandem testes and uterus that extends from the posterior end of the body to the pharynx. Latuterus is distinguished by lacking oral spines, having multiple/follicular testes, a uterus that is extensive in both fore-and hindbody and vitelline follicles which are confined to the region from the pharynx to oral sucker. Caulanus thomasi sp. nov. had identical sequences for all of the rDNA regions examined from specimens recovered from all three localities, indicating that this species has a wide Indo-Pacific distribution. The species reported here are evidently restricted to Lutjanus bohar because they were never found in large numbers of other lutjanid species sampled at the same localities.
The name Deroceras panormitanum is generally applied to a terrestrial slug that has spread worldwide and can be a pest; earlier this tramp species had been called Deroceras caruanae. Neither name is appropriate. The taxonomic descriptions apply to a species from Sicily and Malta. This true D. panormitanum and the tramp species are distinct in morphology and mating behaviour. For instance, the penial caecum of D. panormitanum is more pointed, everting faster at copulation. The size of the penial lobe varies considerably In preserved specimens but is always prominent at copulation. D. panormitanum is distinct from the Maltese endemic Deroceras golcheri, but a phylogeny based on mtDNA COI sequences implies that they are more closely related than is the tramp species. D. golcheri has a still closer counterpart on Sicily, but we leave the taxonomy of this “species X” unresolved. In interspecific crosses, D. panormitanum may transfer sperm to the partner’s sarcobelum whereas the partner fails to evert its penis (D. golcheri) or to transfer sperm (the tramp species). Names previously applied to the tramp species originally referred to D. panormitanum or are otherwise invalid, so it is here formally redescribed as D. invadens. Deroceras giustianum Wiktor, 1998 is synonymised with D. panormitanum.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.