Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  cold response
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Tomato is sensitive to cold during vegetative growth, fruit set, development, and ripening. We have characterized the effect of cold stress (6°C for up to 48 h) on the transcriptome of Micro-Tom tomato fruits during ripening by subtractive PCR. The cold stress caused modifications in gene expression of housekeeping genes. From a total of 38 genes up-regulated by cold, only one clone - a dehydrin homologue - was related to previously identified cold-stress genes. Phylogenetic analysis showed its clustering with other cold-induced dehydrins, and increased distances from dehydrins activated by abscisic acid. Quantitative expression analysis of tomato dehydrin showed it was activated by cold treatment in leaves and fruits. As dehydrin is a member of the Sl-CBF1 regulon from tomato, we analyzed the cold-responsive transcription factor Sl-CBF1 in mature leaves and ripening fruits stored at 6°C. Leaves of Micro-Tom showed high basal levels of the transcription factor Sl-CBF1, compared to fruits. Cold treatment caused increased levels of Sl-CBF1 expression in leaves but not in fruits of Micro-Tom and Demisem (a commercial cultivar). Tomato dehydrin can be used as a transcriptional marker of cold stress in leaves and ripening fruits. However, our results indicate that the cold response activation of dehydrin gene in tomato fruits is the consequence of an alternative pathway, different from the Sl-CBF1 regulon.
The cold-responsive (COR) genes play an important role in cold acclimation of higher plants. Here, a tight correlation between chloroplast functionality and COR15A expression, and the functional characterization of Arabidopsis COR15A involved in salt/osmotic stress, were revealed. COR15A gene is light inducible and expressed in light-grown seedlings. The expression level of COR15A was reduced when chloroplasts were damaged by norflurazon treatment. By using several albino mutants, seca1, secy1, and tic20, all of which exhibited severe defects in both structure and function of chloroplast, it was shown that the accumulation of COR15A mRNA depends on chloroplast functionality. Real-time RT-PCR and GUS-staining assays demonstrated that COR15A was induced by salt/osmotic stress partially via ABA. Overexpression of COR15A in Arabidopsis resulted in the seedlings displaying hypersensitivity to salt/osmotic stress. All these results suggest that plant acquire the ability to fully express COR15A only after the development of functional chloroplasts, COR15A may be involved in response to salt/ osmotic stress during early stages of plant development.
High expression of osmotically responsive genes 1 (HOS1) encodes an ubiquitin E3 ligase that promotes the degradation of transcription factor Inducer of CBF Expression 1 (ICE1). Inactivation of ICE1 reduces CBF-induced activation of many cold-responsive genes, and thus, HOS1 act as a negative regulator of cold-responsive genes. In this paper, a novel HOS1 gene, designated PtrHOS1 (Genebank accession number FJ844367), was cloned by RT-PCR and RACE-PCR from trifoliate orange [Poncirus trifoliata (L.) Raf.]. The full length of PtrHOS1 is 3,434 bp with an open reading frame of 2,922 bp, encoding a protein of 974 amino acids with a molecular weight of 110.2 kDa and a theoretical isoelectric point of 5.55. Sequence alignment showed that PtrHOS1 protein had a conserved RING finger domain in its N-terminal region and shared high identity with other plant species HOS1-like proteins. Semi-quantitative RT-PCR analysis revealed that PtrHOS1 could be constitutively expressed at high levels in leaves, stems and roots. Interestingly, the PtrHOS1 expression had a declined period in leaves, stems and roots after cold and ABA treatments, which suggested that the PtrHOS1 expression was down regulated both by cold and ABA. Moreover, the decline was first occurred in leaves (30 min), followed with stems (2 h) and roots (4 h) after cold treatments. These results probably suggest that the leaves of trifoliate orange first sense the cold stress, followed with stems and roots. Oppositely, after ABA treatments, the significant decline of PtrHOS1 expression was first occurred in roots (15 min), followed with stems and leaves (30 min). Our results provide useful information for further studies about cold acclimation mechanism in citrus.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.