Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  coastal upwelling
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We suggest to transfer the empirical downscaling methodology, which was developed mostly for atmospheric dynamics and impacts, to regional ocean problems. The major problem for doing so is the availability of decades-long and homogeneous and spatially detailed data sets. We have examined the performance of the STORM multidecadal simulation, which was run on a 0.18 grid and forced with 1950—2010 NCEP re-analyses, in the South China Sea and found the data suitable. For demonstration we build with this STORM-data downscaling model for the regional throughflow. The STORM data is compared with AVISO satellite observations and the ocean re-analysis dataset C-GLORS. We find the seasonal patterns and the inter-annual variability of sea surface height anomaly in both the C-GLORS data and the STORM simulation consistent with the AVISO- satellite data. Also the strong westward intensification and the seasonal patterns of South China Sea circulation steered by the monsoon have been presented well. As an important indicator of vertical movement, the sea surface temperature distribution maps are also very close, especially for the narrow upwelling region in summer. We conclude that the output of the STORM simulation is realistically capturing both the large-scale as well as the small-scale dynamical features in the South China Sea.
Among over 150 maps of sea surface temperature in the Polish Baltic coastal region derived from satellite data during the warm period of the year (April–October) in 2000–2002, 41 cases were noted where its distribution showed characteristic features indicating the occurrence of coastal upwelling. The fundamental parameters of range, probability of occurrence and temperature modification caused by water from deeper sea layers raised by an upwelling event and spreading across the surface were established for three regions (Hel, Łeba and Kołobrzeg). The Kołobrzeg upwelling region had the largest spatial range (up to 5000 km2). The region with the smallest spatial range (Hel, up to 1400 km2) had the largest surface temperature amplitude (to 14◦C), the largest maximum temperature gradient (5◦C km−1) and the largest average sea surface temperature decrease in the centre in relation to the background value.
Space-time variations in chlorophyll a (Chl a) concentrations in the surface water of upwelling regions along the Polish coast of the Baltic Sea were analysed. Carried out between 1998 and 2002 in the warmer season (from April till October), the measurements were targeted mainly at the Hel upwelling. Satellite-derived sea surface temperature (AVHRR) and Chl a data (SeaWiFS) were used. Generally speaking, the Chl a concentration increased in the upwelling plume, except along the Hel Peninsula, where two scenarios took place: a reduction in Chl a concentration in spring and an increase in autumn.
9
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Coastal up- and downwelling in the Southern Baltic

86%
A three-dimensional hydrodynamic model was used to determine 12 zones of upand downwelling in the southern part of the Baltic Sea.O n the basis of a seven-year numerical simulation, the annual frequency of up- and downwelling events in various regions was analysed, their vertical velocity evaluated and the probability of their occurrence for different wind directions calculated.V erification of the model results demonstrated their good correspondence with satellite images, on average equal to 92%.The poorest consistency was recorded for upwelling in the Bornholm region (81%).The annual average frequency of strong upwelling (velocities > 10−4 m s−1) ranged from c.5–7% off the eastern coasts of the southern Baltic to > 31% along the north-eastern coast of Bornholm.A long the Polish coast (excepting the Vistula Spit) downwelling was recorded more frequently than upwelling.The frequency of strong vertical currents was highest in the area to the north of the Hel Peninsula, where high percentages of strong upwelling (27.1%) and downwelling (37.1%) were recorded.
Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST) drop. Its intensity depends not only on the magnitude of an upwelling-favourable wind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a ‘chain’ of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse. Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situ observations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28 000 kg m−1 s−1 to reach its mature, full form, whereas an impulse of only 7500 kg m−1 s−1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy.
A coupled three-dimensional physical model and a nitrogen-based nutrient, phytoplankton, zooplankton, and detritus (NPZD) ecosystem model were applied to simulate the summer coastal upwelling system over the continental shelf of northern South China Sea (NSCS) and its impact on hydrographic conditions and ecosystem. The simulated results were comprehensively validated against field and satellite measurements. The model results show that the near shore ecosystem of NSCS has significant responses to the summer coastal upwelling system. The Shantou Coast to the Nanri Islands of Fujian province (YD) and the east of the Leizhou Peninsula (QD) are two main regions affected by NSCS summer coast upwelling. During summer, these two coastal areas are characterized by nearshore cold and high salinity upwelling current. Further, the summer coastal upwelling serves as a perfect nutrient pump, which lifts up and advects nutrient-rich current from deep to surface, from inner shelf to about 30 km outer shelf. This nutrient source reaches its maximum in the middle of July and then begins to decrease. However, the maximum phytoplankton and chlorophyll a do not coincide with the maximum nutrients and delay for about 10 days. Because of the intensive seasonal thermocline and the complicated current transporting through Qiongzhou strait, the ecological responding of QD is less pronounced than YD. This study has a better understanding of the physically modulated ecological responses to the NSCS summer coastal upwelling system.
A statistical analysis of Baltic Sea upwelling has been carried out to cover, for the first time, the entire sea area for the period 1990–2009. Weekly composite SST maps based on NOAA/AVHRR satellite data were used to evaluate the location and frequency of upwelling. The results obtained were analysed and compared with earlier studies with excellent agreement. Our study enables the most intense upwelling areas in the entire Baltic Sea to be evaluated. According to the analysis of 443 SST maps, the most common upwelling regions are found off the Swedish south and east coasts (frequency 10–25%), the Swedish coast of the Bothnian Bay (16%), the southern tip of Gotland (up to 15%), and the Finnish coast of the Gulf of Finland (up to 15%). Pronounced upwelling also occurs off the Estonian coast and the Baltic east coast (up to 15%), the Polish coast and the west coast of Rugen (10–15%); otherwise the upwelling frequency was between 5 and 10%. Additionally, simulated SST distributions derived from a Baltic Sea numerical model were analysed for the same period. Furthermore, at specific positions close to the coastline, surface winds based on the SMHI meteorological data base were analysed for the same 20-year period. Wind components parallel to the coast were discriminated into favourable and unfavourable winds forcing upwelling. The obtained frequencies of upwelling-favourable winds fit very well the observed upwelling frequencies derived from satellite SST maps. A positive trend of upwelling frequencies along the Swedish east coast and the Finnish coast of the Gulf of Finland was calculated for the period 1990–2009.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.