Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 230

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 12 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  chlorophyll a
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 12 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The parameters of chlorophyll a fluorescence induction were measured: Fv/Fm, Sc/Fm, Rfd and coefficient of Ld delayed luminescence decay kinetics, related with a course of primary photosynthesis reactions on leaves of strawberry plants, cultured in vitro by means of the micropropagation methods. Strawberry plants cv. Ananasowa from in vitro cultures in optimal condition show significantly higher values of luminescence parameters indicating better condition of plants of this variety in comparison with the variety Senga Sengana. After temperature lowering, however, these values were more reduced than for plants of Senga Sengana, which can be interpreted as higher susceptibility of this variety to chill. Addition of BAP caused disturbance of primary photosynthesis reactions rate, particularly in lower temperature. Auxin 2,4-D had no effect on the luminescence parameters in comparison with control cultures. Dehydration stress strongly diminished the values of measured parameters for Ananasowa variety what indicates the inhibition of primary photosynthesis reaction in leaves. The old culture of Senga Sengana variety showed higher tolerance on linuron in comparison with the new one.
The microphytobenthic primary production and chlorophyll a content were studied over the annual cycle (May 1998 – May 1999) on a non-tidal Baltic sandy beach at three stations along the beach gradient: littoral, waterline and splash zone. The chlorophyll a concentrations varied between 0.88 and 12.18 μg cm−3. Net and gross primary production rates respectively lay within the ranges 0.1–31.4 mgC m−2 h−1 and 0.2–41.8 mgC m−2 h−1. The highest values of both Chl a content and primary production were noted at the littoral station, the lowest ones at the waterline. The mean annual P/B ratio was highest at the waterline. The differences in Chl a content between stations were statistically significant and may be related to water dynamics, resuspension and water content. Production rates were highly variable on monthly time scales, and the highest results at all the study locations were noted in July. The gross photosynthetic rates were significantly correlated with water temperature.
The aim of the study was to measure the transparent exopolymer particles (TEP) concentration in cultures of Anabaena flos-aquae OL-K10 and to determine the relationship between the quantity of particles produced and the light intensity, the age of the culture and the presence of nitrogen in the culture medium. This is the first time TEP production has been investigated in the Nostocales, an order of nitrogen-fixing phytoplankton species. The results showed that TEP production depends on the presence of nitrogen in the culture medium. The longer the culture is grown, the higher the correlation between its TEP content and its chlorophyll a concentration.
From a data set of observations of Suspended Particulate Matter (SPM) concentration, Turbidity in Formazin Turbidity Unit (FTU) and fluorescence-derived chlorophyll-a at a mooring station in Liverpool Bay, in the Irish Sea, we investigate the seasonal variation of the SPM: Turbidity ratio. This ratio changes from a value of around 1 in winter (minimum in January— February) to 2 in summer (maximum in May—June). This seasonal change can be understood in terms of the cycle of turbulence and of the phytoplankton population that affects the nature, shape and size of the particles responsible for the Turbidity. The data suggest a direct effect of phytoplankton on the SPM:Turbidity ratio during the spring bloom occurring in April and May and a delayed effect, likely due to aggregation of particles, in July and August. Based on the hypothesis that only SPM concentration varies, but not the mass-specific backscattering coefficient of particles bbp *, semi-analytical algorithms aiming at retrieving SPM from satellite radiance ignore the seasonal variability of bbp * which is likely to be inversely correlated to the SPM:Turbidity ratio. A simple sinusoidal modulation of the relationship between Turbidity and SPM with time helps to correct this effect at the location of the mooring. Without applying a seasonal modulation to bbp *, there is an underestimation of SPM in summer by the Ifremer semi-analytical algorithm (Gohin et al., 2015) we tested. SPM derived from this algorithm, as expected from any semi-analytical algorithm, appears to be more related to in situ Turbidity than to in situ SPM throughout the year.
This article is the first in a series of three describing the modelling of the vertical different photosynthetic and photoprotecting phytoplankton pigments concentration distributions in the Baltic and their interrelations described by the so-called non-photosynthetic pigment factor. The model formulas yielded by this research are an integral part of the algorithms used in the remote sensing of the Baltic ecosystem. Algorithms of this kind have already been developed by our team from data relating mainly to oceanic Case 1 waters (WC1) and have produced good results for these waters. But their application to Baltic waters, i.e., Case 2 waters, was not so successful. On the basis of empirical data for the Baltic Sea, we therefore derived new mathematical expressions for the spatial distribution of Baltic phytoplankton pigments. They are discussed in this series of articles. This first article presents a statistical model for determining the total concentration of chlorophyll a (i.e., the sum of chlorophylls a+pheo derived spectrophotometrically) at different depths in the Baltic Sea Ca(z) on the basis of its surface concentration Ca(0), which can be determined by remote sensing. This model accounts for the principal features of the vertical distributions of chlorophyll concentrations characteristic of the Baltic Sea. The model’s precision was verified empirically: it was found suitable for application in the efficient monitoring of the Baltic Sea. The modified mathematical descriptions of the concentrations of accessory pigments (photosynthetic and photoprotecting) in Baltic phytoplankton and selected relationships between them are given in the other two articles in this series (Majchrowski et al. 2007, Woźniak et al. 2007b, both in this volume).
Space-time variations in chlorophyll a (Chl a) concentrations in the surface water of upwelling regions along the Polish coast of the Baltic Sea were analysed. Carried out between 1998 and 2002 in the warmer season (from April till October), the measurements were targeted mainly at the Hel upwelling. Satellite-derived sea surface temperature (AVHRR) and Chl a data (SeaWiFS) were used. Generally speaking, the Chl a concentration increased in the upwelling plume, except along the Hel Peninsula, where two scenarios took place: a reduction in Chl a concentration in spring and an increase in autumn.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 12 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.