Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  caloric restriction
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Restricting food intake to a level below that consumed voluntarily (85%, 70% and 50% of the ad libitum energy intake for 3 or 30 days) and re-feeding ad libitum for 48 h results in an increase of malic enzyme (ME) gene expression in rat white adipose tissue. The increase of ME gene expression was much more pronounced in rats main­tained on restricted diet for 30 days than for 3 days. The changes in ME gene expres­sion resembled the changes in the content of SREBP-1 in white adipose tissue. A sim­ilar increase of serum insulin concentration was observed in all groups at different degrees of caloric restriction and refed ad libitum for 48 h. Caloric restriction and refeeding caused on increase of ME activity also in brown adipose tissue (BAT) and liver. However, in liver a significant increase of ME activity was found only in rats maintained on the restricted diet for 30 days. No significant changes after caloric re­striction and refeeding were found in heart, skeletal muscle, kidney cortex, and brain. These data indicate that the increase of ME gene expression after caloric re- striction/refeeding occurs only in lipogenic tissues. Thus, one can conclude that calo­ric restriction/refeeding increases the enzymatic capacity for fatty acid biosynthesis.
Background. Caloric restriction (CR) leads to decrease metabolic intensity, which results in a reduction of oxygen consumption and the amount of free radicals. This can affect the function of the liver. Studies show that caloric restriction does not alter or significantly increase the enzyme activity associated with gluconeogenesis, but the effect was different according to the age of the model animals. Objective. The aim of the study was to determine the effect of caloric restriction on liver function in young and old ApoE/ LDLr-/- mice. Material and methods. Dietary experiments were performed on 2 and 5 month old male ApoE/LDLr-/- mice. Animals were divided into 3 experimental groups (n=6) and fed AIN’93G diet for 8 and 5 weeks, respectively. Control animals were fed ad libitum (AL) and housed in a colony cages. These animals were checked for dietary intake. The second group were also fed ad libitum but the animals were kept individually in cages (stress AL- sAL). Similarly to sAL group, the animals from the CR group were kept individually but received a 30% less diet compared to AL group. At the end of the experiment animals were euthanized and the blood, liver and adipose tissue have been collected. Alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST) were measured in plasma. Fatty acid profile was evaluated (relative %) in adipose tissue (GC-MS). Liver’s stetosis was assessed. Results were analyzed statistically (ANOVA, STATISTICA v.10.0). Results. CR ApoE/LDLr-/- mice showed significantly lower body weight compared to animals, both AL and sAL. There were no significant differences between ALT and AST in both younger and older animals. However, negative tendencies were more pronounced in younger animals. In young animals CR significantly increased liver weight compared to AL (4.14 vs 3.73g/100g). In adipose tissue fatty acid profile differed in CR mice compared to control in young animals. Conclusions. Caloric restriction did not affect liver enzymes in mice. Caloric restriction showed similar but not identical metabolic activity in young and old mice.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.