Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 40

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  blue-green alga
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The paper presents the results of experiments to determine the influence of selected physico-chemical factors – oxygen, visible light and temperature – on the decomposition of (1) chlorophylls a, b and c, chlorophyll a derivatives and β-carotene in acetone solution, and (2) chlorophyll a and β-carotene in axenic cultures of the blue-green algae Anabaena variabilis. The results indicate that both in acetone extracts and in blue-green algae cultures these pigments were most sensitive to light and oxygen; temperatures of up to 25◦C had no marked influence on these compounds. Under anoxia in acetone solution, the stability towards light decreased in the order chlorophyll a, chlorophyll b, chlorophylls c. Chlorophyll a, moreover, was less stable than its derivatives – phaeophorbides, phaeophytins, pyrophaeophytins and steryl chlorins – but more stable than β-carotene, in the last case also in the blue-green algae cultures. Decomposition of all the pigments proceeded mainly via the breakdown of the porphyrin macrocycle, since the decomposition products were not detected in the VIS range. On the basis of these experiments one can state that while light and oxygen may have a decisive direct influence on the distribution of chlorophylls and β-carotene in sediments, in the natural environment, temperatures of up to 25◦ C may have very little immediate effect.
The phenomenon of cyanobacteria (blue-green algae) blooms in the Baltic and the surrounding freshwater bodies has been known for several decades.The presence of cyanobacterial toxic metabolites in the Curonian Lagoon has been investigated and demonstrated for the first time in this work (2006–07). Microcystis aeruginosa was the most common and widely distributed species in the 2006 blooms. Nodularia spumigena was present in the northern part of the Curonian Lagoon, following the intrusion of brackish water from the Baltic Sea; this is the first time that this nodularin-(NOD)-producing cyanobacterium has been recorded in the lagoon.W ith the aid of high-performance liquid chromatography (HPLC), four microcystins (MC-LR, MC-RR, MC-LY, MC-YR) and nodularin were detected in 2006.T he presence of these cyanobacterial hepatotoxic cyclic peptides was additionally confirmed by enzyme-linked immunosorbent assay (ELISA) and protein phosphatase inhibition assay (PP1).Micr ocystin-LR, the most frequent of them, was present in every sample at quite high concentrations (from <0.1 to 134.2 μg dm−3).I n 2007, no cyanobacterial bloom was recorded and cyanotoxins were detected in only 4% of the investigated samples.A comparably high concentration of nodularin was detected in the northern part of the Curonian Lagoon.I n one sample dimethylated MC-RR was also detected (concentration 7.5 μg dm−3).
The phytoplankton in the inner Neva Estuary is described from data obtained from 1996 to 2000.T he seasonal dynamics of the phytoplankton biomass are characterized by a bimodal curve with a summer maximum.T he average seasonal biomass was approximately 3 mg l−1, the maximum biomass was 8–11 mg l−1. The species composition and quantitative parameters were compared to those observed in the 1980s.A notable, nearly 1.5–2 fold, increase in the biomass in the summer–autumn period and the predominance of Oscillatoria species among the blue-green algae were observed.A decline in the nutrient load in the water body at the end of the 1990s appeared to be insufficient to bring about a decrease in the proportion of Oscillatoria algae in the total species composition or a decline in the biomass of the entire phytoplankton community. In 2000 a certain change in the structural composition of the phytoplankton complex was noted.S pecies that had been predominant in the 1980s and had lost their advantage in the early 1990s, regained their earlier status.
Cyanobacteria, otherwise known as blue-green algae, are oxygenic, photosynthetic prokaryotes. They occur naturally in many fresh, marine and brackish waters worldwide and play an important role in global carbon and nitrogen cycles. In their long history, cyanobacteria have developed structures and mechanisms that enable them to survive and proliferate under different environmental conditions. In the Baltic Sea, the mass development of cyanobacteria is compounded by a high level of eutrophication. The dominant species in the Baltic, the filamentous Aphanizomenon flos-aquae and Nodularia spumigena, can fix dissolved atmospheric N2, as a result of which they can outcompete other phytoplankton organisms. Heterocystous, filamentous cyanobacteria also make a significant contribution to the internal nutrient loading in the Baltic. The blooms of N. spumigena are of particular concern, as this cyanobacterium produces nodularin (NOD), a hepatotoxic peptide. The concentration of the toxin in the sea is regulated mainly by dilution with uncontaminated water, photolysis, sorption to sediments and microbial degradation. The transfer of the toxin in the Baltic trophic chain through zooplankton, mussels, fish and birds has been reported, but biodilution rather than bioconcentration has been observed. Cyanobacterial blooms are thought to pose a serious threat to the ecosystem. Their harmful effects are related to the occurrence of a high biomass, oxygen depletion, a reduction in biodiversity, and the production of toxic metabolites.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.