Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  blastomere
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Mammalian development is a process, whereby cells from a totipotent zygote gradually lose their potency, i.e. their ability to differentiate, in the environment of the developing embryo. An ideal model for testing the real potential of cells is the experimental production of chimaeras. The first experimentally produced mammalian (murine) chimaeras were created by Tarkowski [1961] and since then many new methods of chimaera production have been developed, including injecting cells into the blastocyst’s cavity or into cleaving embryos. This review describes how different cell types, depending on the developmental stage or culture conditions, manifest their potential to contribute to chimaeras. Cell developmental potential has been analysed in pluripotent blastomeres, which can contribute to all embryonic and extra-embryonic lineages, albeit differently depending on their developmental stage. This is the case in blastocyst lineages, with various developmental potentials depending on the surrounding cells, and in more differentiated cells from different stages of pregnancy, which in some cases may colonise chimaeric animal tissue. Cell potential has also been analysed in embryonic stem and embryonal carcinoma cells, which are pluripotent and efficiently contribute to chimaeras; in multipotent fetal and adult stem cells, which can also participate in chimaera formation; and in somatic mouse embryonic fibroblasts (MEFs), which can also be reprogrammed in the environment of the cleaving embryo. Interspecies chimaera studies have also demonstrated the pluripotency of foreign cells. Experiments with chimaeras have shown that not only pluripotent embryonic cells are capable of contributing to chimaeras, so are adult cells, which plasticity is now well-documented.
Ultrastructural evidence for early intraurerine embryonic development of Wenyonia virilis is presented. At the initial stage of egg formation, the fertilized oocyte or ovum is surrounded by numerous vitellocytes and newly formed eggshell. Individual vitellocytes undergo progressive fusion into a vitelline syncytium. During cleavage divisions, three types of blastomeres are formed: macromeres, mesomeres and micromeres. Two large macromeres contain a large nucleus with spherical nucleolus and numerous small heterochromatin islands dispersed in moderately electron-dense nucleoplasm. The granular cytoplasm shows a few large mitochondria. Medium-sized mesomeres contain a spherical nucleus with numerous heterochromatin islands, adjacent to the nuclear envelope, and a prominent electron-dense nucleolus. Their nuclei are embedded in granular cytoplasm with a few large and numerous small mitochondria and Golgi complexes. The small micromeres are characterized by presence of spherical nucleoli with large areas of highly condensed heterochromatin and a few islands of granular electron-lucent nucleoplasm. Their granular cytoplasm shows a few small lipid droplets and several spherical mitochondria. Majority of micromeres give rise to the hexacanth but many of them also undergo degeneration or apoptosis. Both mesomeres and macromeres are engaged in the formation of the oncospheral envelopes. The outer envelope is formed by a fusion of two macromeres whereas the inner envelope originates from a fusion of mesomeres. The intrauterine eggs of W. virilis usually contain an embryo at the early preoncopheral phase of development and possesses three primary envelopes: (1) thick eggshell; (2) thin cytoplasmic layer of the outer envelope and (3) inner envelope. Based on embryonic development, egg type and life-cycle characteristics, caryophyllideans tend to show closer affinities to spathebothriideans than to the former pseudophyllideans.
Ultrastructural aspects of the advanced embryonic development and cotylocidial morphogenesis of the aspidogastrean Aspidogaster limacoides are described. The posterior or distal regions of the uterus are filled with eggs containing larvae at advanced stages of morphogenesis and fully-formed cotylocidia. Various stages and organs of this larva are described in detail, including the aspects of the developing and fully-differentiated cotylocidium, the body wall (tegument and musculature), glandular regions and the protonephridial excretory system. Blastomere multiplication by means of mitotic divisions takes place simultaneously with the degeneration or apoptosis of some micromeres; this frequently observed characteristic is compared and discussed in relation to corresponding reports for other neodermatans. During the advanced stages of the embryonic development of A. limacoides, the vitelline syncytium disappears and the size of the embryo increases rapidly. Evident polarization of the differentiating larva was observed; towards one pole of the egg, cytodifferentiation of the mouth, surrounded by the oral sucker and cephalic glands, takes place, whereas, towards the opposite pole, differentiation of the posterior sucker (incipient ventral disc) occurs. The oral and posterior suckers are formed from numerous embryonic cells which have differentiated into myocytes. The central part of the oral sucker undergoes invagination and forms the future pharynx and intestine. Fully-developed cotylocidia of A. limacoides have a neodermatan type of tegument, flame cells and two types of glandular structures. These results suggest a sister relationship between the Aspidogastrea and the Digenea, although the systematic position of aspidogastreans in relation to other platyhelminth taxa remains somewhat equivocal.
Spontaneous parthenogenetic activation of bovine oocytes in an in vitro maturation and fertilization system (IVM/IVF) is described. Altogether, 1403 follicular oocytes, collected by the aspiration method, were matured in vitro and then cultured without insemination in the same conditions as a group of inseminated oocytes. After 48-72 h of additional culture, 141 oocytes (10%) were found to be spontaneously activated. Morphological evaluation revealed that the number of blastomeres within parthenotes ranged from 2 to 16 cells, with a minority (15.7%) comprising of 9-16 blastomeres. According to a cytogenetic analysis, only 1.2% of the analysed parthenotes consisted of more than 9 cells. Parthenotes may not be distinguished from embryos produced in vitro and spontaneous parthenogenetic activation in an IVM/IVF system indicates suboptimal culture conditions. A group of non-inseminated oocytes should be included in each experiment to serve as a control. Spontaneously activated bovine parthenotes only occasionaly developed beyond the 8-blastomere stage in a common IVM/IVF system. The incidence of parthenotes interferes with the efficiency of in vitro embryo production but it is doubtful whether it lowers the pregnancy rate after transfer of IVF embryos.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.